23 research outputs found

    Searching for solvents with an increased carbon dioxide solubility using multivariate statistics

    Get PDF
    Ionic liquids (ILs) are used in various fields of chemistry. One of them is CO2 capture, a process that is quite well described. The solubility of CO2 in ILs can be used as a model to investigate gas absorption processes. The aim is to find the relationships between the solubility of CO2 and other variables—physicochemical properties and parameters related to greenness. In this study, 12 variables are used to describe a dataset consisting of 26 ILs and 16 molecular solvents. We used a cluster analysis, a principal component analysis, and a K-means hierarchical clustering to find the patterns in the dataset and the discriminators between the clusters of compounds. The results showed that ILs and molecular solvents form two well-separated groups, and the variables were well separated into greenness-related and physicochemical properties. Such patterns suggest that the modeling of greenness properties and of the solubility of CO2 on physicochemical properties can be difficult

    Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review

    No full text
    In this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions in terms of solvents, reagents, processes, or conditions of processes. Another important area is filling the data gaps in datasets to more fully characterize sustainable options. It is significant as many experiments are avoided, and the results are obtained with good approximation. Multivariate statistics are tools that support the application of quantitative structure–property relationships, a widely applied technique in green chemistry

    Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples

    No full text
    In the case of quantitative and qualitative analysis of pesticides in environmental and food samples, it is required to perform a sample pre-treatment process. It allows to minimalize the impact of interferences on the final results, as well as increase the recovery rate. Nowadays, apart from routinely employed sample preparation techniques such as solid-phase extraction (SPE) or solid-phase microextraction (SPME), the application of molecularly imprinted polymers (MIPs) is gaining greater popularity. It is mainly related to their physicochemical properties, sorption capacity and selectivity, thermo-mechanical resistance, as well as a wide range of polymerization techniques allowing to obtain the desired type of sorption materials, adequate to a specific type of pesticide. This paper targets to summarize the most popular and innovative strategies since 2010, associated with the MIPs synthesis and analytical procedures for pesticides determination in environmental and food samples. Application of multi-criteria decision analysis (MCDA) allows for visualization of the most beneficial analytical procedures in case of changing the priority of each step of analysis (MIPs synthesis, sample preparation process—pesticides extraction, chromatographic analysis) bearing in mind metrological and environmental issues

    Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics

    No full text
    Ionic liquids (ILs) are used in various fields of chemistry. One of them is CO2 capture, a process that is quite well described. The solubility of CO2 in ILs can be used as a model to investigate gas absorption processes. The aim is to find the relationships between the solubility of CO2 and other variables—physicochemical properties and parameters related to greenness. In this study, 12 variables are used to describe a dataset consisting of 26 ILs and 16 molecular solvents. We used a cluster analysis, a principal component analysis, and a K-means hierarchical clustering to find the patterns in the dataset and the discriminators between the clusters of compounds. The results showed that ILs and molecular solvents form two well-separated groups, and the variables were well separated into greenness-related and physicochemical properties. Such patterns suggest that the modeling of greenness properties and of the solubility of CO2 on physicochemical properties can be difficult

    Long-Term Use of <i>Silybum marianum fruit extract</i> Contributes to Homeostasis in Acne-Prone Skin—A 12-Month Follow-Up International “Real Life” Cohort Study

    No full text
    Background: Homeostasis in the differentiation programme of sebaceous stem cells has been identified as a key step in comedogenesis and should be a target for acne-prone skin care. Objective: To report on a multicentre, year-long/real-life use study of a patented natural product containing S. marianum fruit extract proven to modulate molecular actors in the initial steps of comedogenesis. Methods: An open-label multicentric international study, with a 12 month follow-up, included 54 teenage and young adult subjects with mild to moderate facial acne. The study was aimed at reproducing a real-life use context. Results: Total lesion count mean was 88.3 at inclusion. There was a sustained, highly significant decrease over the months of clinical lesion counts (45.6% improvement after 6 months and 59.6% at 12 months) and on other efficacy markers, associated with a significant decrease in global microcomedone quantity on cyanoacrylate superficial skin surface biopsies. Importantly, the study protocol allowed the dermatologist to prescribe, if needed as in real life, any of the acne drugs registered in the acne guidelines. The exposure to these acne drugs during the whole year was calculated as a percentage of S. marianum fruit extract/352 days of use and happened to be very limited at less than 4%, which indicates a marginal contribution to the sustained clinical improvement. (Oral and local acne treatments: Lymecycline 1.46%; Doxycycline 0.24%; Adapalene 0.16% or gel association with Benzoyl peroxide 1.17%; Clindamycin 0.04%; Benzoyl peroxide 1.5%; Erythromycin 0.75%). The tolerance with daily S. marianum fruit extract long-term use was good. Limitations: The association with routine prescription acne drugs when needed, even if limited, does not allow a full evaluation of the intrinsic quantitative efficacy of S. marianum fruit extract in lesion reduction. Conclusion: This open, real-life, year-long multicentre study confirms a previous 48-week proof of concept study and qualifies the use of S. marianum fruit extract as a “field-dermo cosmetic” contributing to homeostasis of acne-prone skin in association with acne drugs
    corecore