5 research outputs found

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Advances in Retinal Neuroprosthetics

    No full text
    Submitted as a book chapter to the IEEE/Wiley edited book on Neural Engineering/Neuro

    Stimulation of peripheral nerves using conductive hydrogel electrodes

    No full text
    Nerve block via electrical stimulation of nerves requires a device capable of transferring large amounts of charge across the neural interface on chronic time scales. Current metal electrode designs are limited in their ability to safely and effectively deliver this charge in a stable manner. Conductive hydrogel (CH) coatings are a promising alternative to metal electrodes for neural interfacing devices. This study assessed the performance of CH electrodes compared to platinum-iridium (PtIr) electrodes in commercial nerve cuff devices in both the in vitro and acute in vivo environments. CH electrodes were found to have higher charge storage capacities and lower impedances compared to bare PtIr electrodes. Application of CH coatings also resulted in a three-fold increase in in vivo charge injection limit. These significant improvements in electrochemical properties will allow for the design of smaller and safer stimulating devices for nerve block applications

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy (vol 33, pg 110, 2019)

    No full text

    Preoperative risk factors for conversion from laparoscopic to open cholecystectomy: a validated risk score derived from a prospective U.K. database of 8820 patients

    No full text
    corecore