19 research outputs found

    The Imaging X-ray Polarimetry Explorer (IXPE): Technical Overview

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding linear polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, including polarization maps of several x-ray-bright extended sources and phase-resolved polarimetry of many bright pulsating x-ray sources

    High-density and targeted glycoproteomic profiling of serum proteins in pancreatic cancer and intraductal papillary mucinous neoplasm

    No full text
    Objective: Glycoproteomics is an emerging subfield of proteomics. Tumor-specific variations in protein glycosylation might be potential targets for the development of new cancer diagnostics. Here, we performed high-throughput screening and targeted verification of glycome alterations in serum samples from patients with pancreatic cancer and the precancerous lesion intraductal papillary mucinous neoplasm (IPMN). Material and methods: The glycosylation profile of 1000 proteins was mapped in a discovery cohort comprising serum samples from 16 individuals, including 8 patients with pancreatic cancer and 8 healthy controls. The top 10 glycoprotein biomarker candidates with the highest signal intensity difference in glycosylation levels were evaluated in a cohort consisting of 109 serum samples, including 49 patients with resectable pancreatic cancer, 13 patients with resectable noninvasive IPMN and 47 healthy controls, using a targeted assay. Results: Multivariable analysis defined sets of panels comprising CA19-9 and distinctively glycosylated proteins for discrimination between pancreatic cancer, IPMN and healthy controls. A panel including CA 19-9, IL.17E, B7.1 and DR6 gave an AUC of 0.988 at 100% sensitivity at 90% specificity for the discrimination of stage 1 pancreatic cancer and healthy controls. B7.1 was found to be a valuable biomarker for differentiating between IPMN and healthy controls, with better performance alone than CA 19-9. Conclusions: Measurement of protein glycosylation profiles in serum may aid in the early detection of pancreatic cancer and precursor lesions

    Circulating Nucleosomes as Potential Markers to Monitor COVID-19 Disease Progression.

    Full text link
    peer reviewedThe severity of coronavirus disease 2019 (COVID-19) varies significantly with cases spanning from asymptomatic to lethal with a subset of individuals developing Severe Acute Respiratory Syndrome (SARS) and death from respiratory failure. To determine whether global nucleosome and citrullinated nucleosome levels were elevated in COVID-19 patients, we tested two independent cohorts of COVID-19 positive patients with quantitative nucleosome immunoassays and found that nucleosomes were highly elevated in plasma of COVID-19 patients with a severe course of the disease relative to healthy controls and that both histone 3.1 variant and citrullinated nucleosomes increase with disease severity. Elevated citrullination of circulating nucleosomes is indicative of neutrophil extracellular trap formation, neutrophil activation and NETosis in severely affected individuals. Importantly, using hospital setting (outpatient, inpatient or ICU) as a proxy for disease severity, nucleosome levels increased with disease severity and may serve as a guiding biomarker for treatment. Owing to the limited availability of mechanical ventilators and extracorporal membrane oxygenation (ECMO) equipment, there is an urgent need for effective tools to rapidly assess disease severity and guide treatment selection. Based on our studies of two independent cohorts of COVID-19 patients from Belgium and Germany, we suggest further investigation of circulating nucleosomes and citrullination as biomarkers for clinical triage, treatment allocation and clinical drug discovery

    Alpha-1-acid glycoprotein 1 is upregulated in pancreatic ductal adenocarcinoma and confers a poor prognosis

    No full text
    Pancreatic cancer is an aggressive malignancy that carries a high mortality rate. A major contributor to the poor outcome is the lack of effective molecular markers. The purpose of this study was to develop protein markers for improved prognostication and noninvasive diagnosis. A mass spectrometry (MS)-based discovery approach was applied to pancreatic cancer tissues and healthy pancreas. In the verification phase, extracellular proteins with differential expression were further quantified in targeted mode using parallel reaction monitoring (PRM). Next, a tissue microarray (TMA) cohort including 140 pancreatic cancer resection specimens was constructed, in order to validate protein expression status and investigate potential prognostic implications. The levels of protein candidates were finally assessed in a prospective series of 110 serum samples in an accredited clinical laboratory using the automated Cobas system. Protein sequencing with nanoliquid chromatography tandem MS (nano-LC-MS/MS) and targeted PRM identified alpha-1-acid glycoprotein 1 (AGP1) as an upregulated protein in pancreatic cancer tissue. Using TMA and immunohistochemistry, AGP1 expression was significantly associated with shorter overall survival (HR = 2.22; 95% CI 1.30–3.79, P = 0.004). Multivariable analysis confirmed the results (HR = 1.87; 95% CI 1.08–3.24, P = 0.026). Circulating levels of AGP1 yielded an area under the curve (AUC) of 0.837 for the discrimination of resectable pancreatic cancer from healthy controls. Combining AGP1 with CA 19-9 enhanced the diagnostic performance, with an AUC of 0.963. This study suggests that AGP1 is a novel prognostic biomarker in pancreatic cancer tissue. Serum AGP1 levels may be useful as part of a biomarker panel for early detection of pancreatic cancer but further studies are needed

    Evaluation of nucleosome concentrations in healthy dogs and dogs with cancer.

    No full text
    IntroductionNucleosomes consist of small fragments of DNA wrapped around a histone octamer core. Diseases such as cancer or inflammation lead to cell death, which causes fragmentation and release of nucleosomes into the blood. The Nu.Q™ technology measures circulating nucleosome levels and exploits the different compositions of cancer derived nucleosomes in blood to detect and identify cancer even at early stages. The objectives of this study are to identify the optimal sample type for the Nu.Q™ H3.1 assay and to determine if it can accurately detect nucleosomes in the blood of healthy canines as well as those with cancer.Materials and methodsBlood samples from healthy canine volunteers as well as dogs newly diagnosed with lymphoma were used. The blood was processed at a variety of times under a variety of conditions to determine the most reliable sample type and conditions, and to develop an appropriate processing strategy to ensure reliably accurate results.ResultsNucleosomes could be detected using a variety of sample collection and processing protocols. Nucleosome signals were highest in EDTA plasma and serum samples and most consistent in plasma. Samples should be processed within an hour of collection. Experiments showed that samples were able to withstand several freeze thaw cycles. Processing time and tcollection tube type did affect nucleosome detection levels. Finally, significantly elevated concentrations of nucleosomes were seen in a small cohort of dogs that had been newly diagnosed with lymphoma.ConclusionsWhen samples are collected and processed appropriately, the Nu.Q™ platform can reliably detect nucleosomes in the plasma of dogs. Further testing is underway to validate and optimize the Nu.Q™ platform for veterinary use
    corecore