103 research outputs found

    Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential

    Get PDF
    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems

    The first record of \u3ci\u3eOrthochirus glabrifrons\u3c/i\u3e (Kraepelin, 1903) (Scorpiones: Buthidae) from the United Arab Emirates

    Get PDF
    Orthochirus glabrifrons (Kraepelin, 1903) (Scorpiones: Buthidae) was described from Oman (Muscat). Here, we summarize known localities from Oman as well as records from the United Arab Emirates, which is the new country record for this species. Illustrations of morphology of both sexes are given together with a map of distribution. A lectotype of Orthochirus glabrifrons (Kraepelin, 1903) is designated. Paraorthochirus kaspareki Lourenço & Huber, 2000 and Paraorthochirus kinzelbachi Lourenço & Huber, 2000 are synonymized with Orthochirus glabrifrons (Kraepelin, 1903), syn. n

    Production Technology and Competitiveness In the Hungarian Manufacturing Industry

    Get PDF
    Following the big transformations of the 1990s, enterprise structure and technological level seem to have become stabilised in Hungary. Under these circumstances it is especially interesting to identify the elements responsible for competitiveness in general, and the role technology plays in development in particular, according to managers experienced in production and marketing. This empirical study – based on in-depth interviews and field research – summarises characteristics of the technological level in the sectors examined, role of technology and labour in production, effects of foreign direct investment, relations between competition and firm-level factors determining competitiveness, and concludes by summing up those most frequently mentioned proposals that should be incorporated into economic policy according to managers. Main findings indicate that more qualified, more intensive and cheaper labour can be substituted for high technology. The competitiveness of an enterprise is not determined by technology alone, but rather by a combination of technology, the parameters of available labour and the costs of investment increasing productivity. The insufficiency of inter-company relations, together with a shortage of available assets necessary for investment constitute the major threat undermining the competitiveness of enterprises in present-day Hungary

    Extracelluláris vezikulák és hematológiai malignitásokban játszott szerepük

    Get PDF
    Absztrakt Extracelluláris vesiculák minden szervezetben képződnek. Három legintenzívebben vizsgált csoportjuk az apoptotikus testek, a microvesiculák és az exosomák. A sejtek közötti kommunikációban, immunreakciókban, angiogenezisben betöltött szerepük csak néhány az eddig megismertek közül. A fiziológiás folyamatok mellett sokféle betegségben leírták változásaikat; a patomechanizmusban betöltött szerepük mellett felvetődik potenciális használatuk biomarkerekként. A szerzők betekintést kívánnak nyújtani az extracelluláris vesiculák kutatásába, kiemelve azt a néhány tanulmányt, amely a hematológiai malignitásokra fókuszált. A microvesiculák és exosomák vérplazmában mért mennyisége, a terápia során megfigyelt minőségi változása miatt felmerült, hogy a diagnosztikában, prognosztikában, illetve a minimális residualis betegség monitorozásában is használhatók lehetnek. Akut myeloid leukaemiában a természetes ölősejtek aktivitásának szupresszálásában bizonyított a blasteredetű exosomák szerepe. Krónikus lymphoid leukaemiában a microvesiculák közreműködése valószínű a gyógyszer-rezisztencia kialakulásában is. Orv. Hetil., 2016, 157(35), 1379–1384. | Abstract Extracellular vesicles are produced in all organisms. The most intensively investigated categories of extracellular vesicles include apoptotic bodies, microvesicles and exosomes. Among a very wide range of areas, their role has been confirmed in intercellular communication, immune response and angiogenesis (in both physiological and pathological conditions). Their alterations suggest the potential use of them as biomarkers. In this paper the authors give an insight into the research of extracellular vesicles in general, and then focus on published findings in hematological malignancies. Quantitative and qualitative changes of microvesicles and exosomes may have value in diagnostics, prognostics and minimal residual disease monitoring of hematological malignancies. The function of extracellular vesicles in downregulation of natural killer cells’ activity has been demonstrated in acute myeloid leukemia. In chronic lymphocytic leukemia, microvesicles seem to play a role in drug resistance. Orv. Hetil., 2016, 157(35), 1379–1384

    Monocyte activation drives preservation of membrane thiols by promoting release of oxidised membrane moieties via extracellular vesicles

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The redox state of cellular exofacial molecules is reflected by the amount of available thiols. Furthermore, surface thiols can be considered as indicators of immune cell activation. One group of thiol containing proteins, peroxiredoxins, in particular, have been associated with inflammation. In this study, we assessed surface thiols of the U937 and Thp1 monocyte cell lines and primary monocytes in vitro upon inflammatory stimulation by irreversibly labelling the cells with a fluorescent derivative of maleimide. We also investigated exofacial thiols on circulating blood mononuclear cells in patients with rheumatoid arthritis and healthy controls. When analysing extracellular vesicles, we combined thiol labelling with the use of antibodies to specific CD markers to exclude extracellular vesicle mimicking signals from thiol containing protein aggregates. Furthermore, differential detergent lysis was applied to confirm the vesicular nature of the detected extracellular events in blood plasma. We found an increase in exofacial thiols on monocytes upon in vitro stimulation by LPS or TNF, both in primary monocytes and monocytic cell lines (p<0.0005). At the same time, newly released extracellular vesicles showed a decrease in their exofacial thiols compared with those from unstimulated cells (p<0.05). We also found a significant elevation of surface thiols on circulating monocytes in rheumatoid arthritis patients (p<0.05) and newly released extracellular vesicles of isolated CD14(+) cells from rheumatoid arthritis patients had decreased thiol levels compared with healthy subjects (p<0.01). Exofacial peroxiredoxin 1 was demonstrated on the surface of primary and cultured monocytes, and the number of peroxiredoxin 1 positive extracellular vesicles was increased in rheumatoid arthritis blood plasma (p<0.05). Furthermore, an overoxidised form of peroxiredoxin was detected in extracellular vesicle-enriched preparations from blood plasma. Our data show that cell surface thiols play a protective role and reflect oxidative stress resistance state in activated immune cells. Furthermore, they support a role of extracellular vesicles in the redox regulation of human monocytes, possibly representing an antioxidant mechanism.This work was supported by the National Scientific Research Program of Hungary (OTKA) grant no. PD 104369 to KSZT, grant no. PD 112085 to VVK and grant no. 111958 and 120237 to EIB, the MEDINPROT Program (Synergy programs I, III and IV), BMBS COST Action(BM1202), the János Bolyai Research Fellowship of the Hungarian Academy of Sciences (to KVV) and the Kerpel Fronius Program of the Semmelweis University (Astellas Pharma Grant to BSW)

    Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    Get PDF
    INTRODUCTION: Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. MATERIALS AND METHODS: We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. RESULTS: Agitation and storage of blood samples at 37 degrees C for 1hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. CONCLUSIONS: We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses
    corecore