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Cell derived extracellular vesicles are submicron structures surrounded by phospholipid 

bilayer, and released by both prokaryotic and eukaryotic cells.  The sizes of these vesicles 

roughly fall into the size ranges of microbes, and they represent efficient delivery platforms 

targeting complex molecular information to professional antigen presenting cells.  Critical 

roles of these naturally formulated units of information have been described in many 

physiological and pathological processes. Extracellular vesicles are not only potential 

biomarkers and possible pathogenic factors in numerous diseases, but they are also considered 

as emerging therapeutic targets and therapeutic vehicles.  Strikingly, current drug delivery 

systems, designed to convey therapeutic proteins and peptides (such as liposomes), show 

many similarities to extracellular vesicles. Here we review some aspects of therapeutic 

implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration 

of molecular and functional details of extracellular vesicle release and action may provide 

important lessons for the design of future drug delivery systems.  
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Introduction 

Over the past few decades experimental data started to accumulate in support of the existence 

of extracellular vesicles (EVs) in the size range earlier thought to be occupied only by 

microorganisms.  It is only recently that the universality of EV secretion has been recognized 

by the exploration of vesiculation also in prokaryotes [1-3]. The microorganism-sized EVs are 

readily taken up by cells of the immune system. Of note, many of these vesicles are released 

during apoptosis, and the immune system’s “high throughput” homeostatic clearance 

machinery for the uptake of vesicles of apoptotic origin is highly efficient. This process is 

mediated by phagocyte receptors (e.g. phosphatidyl serine receptor, TIM-4 or TAM receptors 

[4, 5] ensuring the rapid internalization of EVs by cells. Importantly, endocytosis is not the 

only uptake mechanism of EVs. Direct fusion of their membrane with the plasma membrane 

of specifically recognized cells has been suggested as another uptake mechanism (for recent  

review see [6].  In this case the content of EVs is released directly into the cytoplasm of the 

targeted cell [7]. The efficient cellular uptake renders EVs attractive candidate vehicles to 

deliver selected molecules to cells.  

There is a striking analogy between currently used pharmaceutical drug delivery systems such 

as liposomes or microparticles designed to deliver proteins or peptides (Figures 1 and 2). In 

general, encapsulation of molecules for targeted delivery provides protection against 

enzymatic degradation, aggregation, or precipitation. Also, encapsulation ensures high local 

concentration of substances at a distant, targeted site. It is tempting to speculate that the 

phospholipid bilayer “capsule” of cell-derived EVs serves similar biological purposes. In line 

with this hypothesis, recently, EVs have been suggested to function as multipurpose carriers i) 

to deliver complex information to other cells ii) for safe removal of potentially harmful 

molecules and iii) aiding and extending functions of the donor cells [8].  
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In contrast to liposomes, EVs are derived from cells of the body, thus, they are composed of 

self molecules tolerated by the immune system. They can be used for prolonged time safely. 

On the other hand, liposomes may be manufactured in large scale synthetically at relatively 

low expenses.  

In the current article, we aim at briefly summarizing some basic concepts and therapeutic 

implications of EVs to attract attention to a rapidly evolving field that emerges in parallel with 

development of nanomedicines as drug delivery systems.  We propose that novel therapeutic 

strategies may benefit from lessons of the evolutionary conserved, natural vesicular structures. 

Overview of EVs 

Classification and nomenclature of cell derived EVs   

It has been suggested that major subpopulations of EVs include exosomes, microvesicles and 

apoptotic bodies [9]. 

Multivesicular bodies (MVBs) of the endocytotic compartment fuse with the plasma 

membrane, and release vesicles (50-100 nm in diameter) designated as exosomes [10, 11]. 

Another pathway of vesicle release involves budding of the plasma membrane with ultimate 

release of membrane surrounded vesicles referred to as microvesicles (MVs) often referred to 

as microparticles or ectosomes [12].  While the size range of exosomes roughly overlaps with 

that of viruses, vesicles, generated by budding, have larger diameter (100-1000 nm) 

corresponding approximately to the size range of bacteria or insoluble immune complexes [9, 

13]. While exosomes are generated both constitutively and upon activation, the release of 

microvesicles is induced during apoptosis and activation [7, 9]. Both major types of EVs are 

encapsulated by a phospholipid bilayer membrane rich in cholesterol.  
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However, recent evidences support that there are numerous further subtypes of EVs. As an 

example, Théry et al. provided evidence for the existence of diverse populations secreted 

by different intracellular mechanisms [14]. 

As yet there is no international consensus regarding the terminology of EVs [15]. 

 

Detection methods of EVs 

 

Detection of EVs imposes significant challenge on cell biologists, since conventional/ routine 

cell biology methodologies can not be applied for the investigation of these subcellular 

structures. Fluorescence microscopy and flow cytometry cannot be used for the analysis of 

exosomes, unless the vesicles are bound onto the surface of beads [16]. The analysis of not 

only exosomes but also of larger sized MVs, have limitations with conventional techniques. 

Flow cytometry fails to detect structures with less than 2-300 nm in diameter. Methodologies, 

used to characterize pharmaceutical liposome or microparticle/nanoparticle preparations, are 

more appropriate for studying cell derived EVs. 

Transmission electron microscopy (in particular immune electron microscopy) has proven 

very useful for the detection and analysis of cell-derived vesicles irrespective of their size [17, 

18]. Electron microscopy of exosomes shows a so called “cup shape” after isolation by 

sucrose gradient/cushion ultracentrifugation (that was suggested to be an artifact of 

preparation), while microvesicles are characterized by spherical shape with cryo- transmission 

electron microscopy [19]. Cryo-electron tomography microsopy was shown to be useful to 

avoid such types of artifacts [20, 21]. Also, scanning electron microscopy [22] single particle 

electrom microscopy [23] and atomic force microscopy was used successfully to visualize 

individual EVs [13, 22]. Further non-conventional techniques of analysis (suitable for the 

analysis of EVs and liposomes)  include dynamic light scattering analysis (DLS), nanoparticle 
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tracking analysis (NTA) [24, 25] and Fluorescence Nanoparticle Tracking Analysis (F-NTA) 

[26], Raman spectroscopy based techniques, Stimulated Emission Depletion (STED) 

microscopy, Impedance-based flow cytometry  and resistive pulse sensing [27]. Presumably, 

the increasing demands of this research field will boost the development of further specific 

methodologies and user-friendly laboratory instruments fitted to the size range of EVs.  

 

Biological functions      

 

EVs are important rescently recognized players of intercellular communication [12, 27, 28]. 

They are known to disseminate, support, and protect basic biological functions of the 

releasing cells. Exosomes have been shown to mediate horizontal transfer of mRNA, miRNA 

[29] and different types of cell surface receptors such as an oncogenic receptor [30] or 

purinergic P2X7 receptor [31]. One of the most important functions described in association 

with exosomes, is antigen presentation, a function earlier attributed to antigen presenting cells 

only [32]. Exosomes display both MHC-I and MHC-II molecules on their surface assembled 

with antigenic peptides. This feature has significant impact on the ability of EVs (such as 

exosomes) to induce immune responses upon injection as vaccines [33, 34]. Consequently,  

immunoregulation (including either stimulation or inhibition) is a principal function of 

exosomes, depending on the cellular source and target of the vesicles [12]. This feature raises 

the intriguing possibility of therapeutic immune modulation by exosomes.  

Although immune regulatory functions of the larger sized MVs have also been reported  (e.g. 

in the fetomaternal communication [35]), their best characterized function is the one they play 

in blood coagulation:  they have significant procoagulant activity [36-39]. Similarly to 

exosomes, MVs represent a form of secretion of IL1 beta [31, 40] and have been suggested to 

contribute to the pathogenesis of rheumatoid arthritis [41, 42]. By their protease [43], and 
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possibly also by their glycosidase expression [44], MVs may contribute to the proinvasive 

character of tumors.   

 

Therapeutic targeting of EVs 

A few years after that the original concept of liposomes was raised by Bangham et al. in 1965 

[45], these artificial lipid vesicles were suggested to be used as drug carriers [46], and a novel 

drug delivery system, liposomal encapsulation of drugs, has been introduced [47]. Currently, 

in the „nano era”, liposomes are frequently referred to as nanoparticles, and their use 

represents an organic part of nanomedicine. However, besides all benefits of engineered 

liposomes (in the case of which biocompatibility and biodegradability is evident), the use of 

EVs may be more favorable. These nature-encapsulated subcellular structures have been 

suggested  for therapeutical delivery of molecules [48] and it may represent novel tools in 

future personalized medicine and in efficient and site-specific delivery of therapeutic drugs or 

nucleic acids.  

Moreover, secreted EVs are not only nature-tailored carrier vehicles with potential therapeutic 

exploitation, but they also represent promising drug targets. As mentioned above, a wide 

variety of human diseases are characterized by elevated numbers and altered composition of 

circulating EVs. While in some cases their increased number may reflect general cellular 

activation or enhanced apoptosis, EVs may also substantially contribute as effectors to disease 

development.  They were shown to contribute to tumor growth, migration and invasion, 

angiogenesis and tumor escape from immune responses (reviewed recently [49]. Therefore 

prevention of EV release or therapeutic removal of released vesicles from the circulation 

might also represent a therapeutic approach.  
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Tumor-derived exosomes are known biologic messengers in cancers, are mediators of 

tolerance induction and are shown to spread tumor growth signals that counteract the activity 

of therapeutic agents [50]. Therefore, therapeutic targeting of tumor cell derived exosomes 

represent an important therapeutic approach. The extracorporeal haemofiltration of circulating 

factors as a therapeutic strategy is already approved to be used in cancer patients [50]. 

 

EVs of pathogens in health and disease 

Functional virus release has been reported to involve several elements from the EV biogenesis 

patways [51]. EVs have been shown to play either enhancing or blocking roles in infections 

and and represent removal systems for endogenous retroviruses or retrotransposons [51]. 

Recently, fraction of Adeno associated virus (AAV) vectors have been shown to be  

associated with EVs(vector-exosomes) and have been suggested for improved  promising 

strategy to improved gene delivery [52].  

EVs have been demonstrated to be secreted by Gram-negative [53, 54] and Gram-positive 

bacteria [55, 56], as well as eukaryotic parasites of the kinetoplast lineage and 

opportunistic fungi of both the ascomycetes and basidiomycetes lineages [57]. 

Outer membrane vesicles (OMVs) of many pathogenic bacteria contribute to the virulence of 

the releasing bacterial cells. Importantly, OMVs have been recently suggested to serve as a 

basis of non-replicating vaccines summarized by Ünal et al. [58]. 

A disease in which EV vaccination was proposed is sepsis, associated with increased 

proinflammatory cytokine levels and the accumulation of apoptotic cells. In the toxoplasmic 

model of sepsis, Toxoplasma gondii-pulsed Dex could stimulate a specific and protective T-

cell response in CBA/J mice [59]. Although the mechanism remained unclear, and 

presumably activators of DCs, B-, T or NK cells may have contributed to the efficacy of 
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exosomes against Toxoplasma gondii infection in this congenital model, Dex appears  to be a 

potentially useful tool for vaccination in sepsis.  

In other models, exosomes derived from immature dendritic cells rescued septic animals 

because of the presence of milk fat globule epidermal growth factor (EGF)-factor VIII (MFG-

E8) on their surface. MFG-E8 is required to opsonise cells for phagocytosis, which has to be 

promoted in septic animals to prevent the release of the potentially harmful substances from 

dying cells. An increased phagocytosis eventually reduces mortality, and attenuates the 

release of proinflammatory cytokines in the septic rats [60]. 

Conclusions 

The ubiquitous feature of vesiculation by both eukaryotes and prokaryotes, has been 

established only recently. Both Gram negative and positive bacteria as well as fungi were 

shown to release these structure, and more recently, also the significance of plant derived 

apoplastic exosome-like vesicles have been suggested [61]. 

It is currently a unique situation that cell-derived EVs can be considered both as novel drug 

targets and natural drug delivery systems. 

Unfolding diseases in which EVs play effector roles, may lead to development of EV 

targeting therapeutic strategies (such as prevention of vesicle relase or to removal of secreted 

ones).  On the other hand, manufacturing EVs for therapeutic applications is feasible in vitro 

inducing vesicle secretion by various stimuli. In vitro manipulation (e.g.  transfection)  of the 

releasing cells provides unique opportunity to produce tailored EVs with customized effector 

or targeting molecules. Vesicles, harvested from tissue culture supernatants, may be injected 

to modulate immune functions or to vaccinate against epitopes presented on vesicular surfaces 

in the context of MHC molecules. EVs are of proper size for uptake by cells, non-toxic, 

biodegradable, carry surface molecules that direct them to targeted cells, and carry complex 
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information. To date, especially exosomes have been shown to have a great potential. 

However, larger sized MVs, currently considered as biomarkers in body fluids such as blood 

plasma, urine or saliva, are far less characterized, and may hold  yet unexplored therapeutic or 

vaccination potential. Vaccination by EVs or removal of circulating exosomes by 

haemofiltration are the types of exploitation of EVs have been already introduced to clinical 

practice.   

A recent study has directly compared liposomes and exosomes as drug delivery systems for 

encapsulation curcumin in them. In a proof-of-principle study of Sun et al. it has been 

demonstrated that encapsulation of the antiinflammatory agent curcumin in exosomes was 

significantly superior to liposomal delivery as shown by the enhanced stability and  higher 

concentration in the blood as well as higher therapeutic efficacy in (LPS)-induced septic 

shock mouse model [62].   

Even though EVs may offer novel opportunities for prevention or therapeutic intervention in 

disease states in which patients do not respond to conventional therapies, one has to be aware 

of the risks also. Given that viruses and exosomes share size distribution and other 

biophysical parameteres, concerns center on potential contamination of exosome preparations 

with viruses. Development of safe technologies of large scale production of virus-free 

exosomal preparations is an absolute prerequisite of their therapeutic exploitation.  

What appears to be clear is that is that researchers developing artificial drug delivery systems 

and those exploring EVs need to have an intense communication, and they should both follow 

the progress in the other field. The two scientific communities must recognize the possible 

mutual benefits of such an interaction.  EV scientists have already taken advantage of 

methodologies originally used for the characterization of microbes, liposomes or other 

nanoparticles (such as DLS, AFM or NTA). Proof for the benefit for drug developers is best 
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examplified by the recent development of artificial exosomes. These are liposomes coated 

with MHC/peptide complexes and Fab regions against T cell receptors to mediate cell surface 

adhesion [63, 64]. Presumably many further experiments will be inspired by lessons of natural 

EVs that successfully overcame evolutional challenges. Studies focusing on nanomedicinal 

drug delivery systems and nature-tailored vesicules may cross-fertilize one another, and may 

lead to novel therapeutical solutions.  
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Figures and Figure Legends 

 

 

 

Figure 1.  Comparison of size ranges of different natural membrane vesicles and 

nanomedicines 
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Figure.2. Cryo-electron microscopic image of liposomes (A) 

(http://www.mardre.com/homepage/mic/tem/samples/colloid/pc_samples/dmpc_liposome_cry

o3.jpg) and 5/4 T hybridoma cell exosomes  (B) show high similarity in both size distribution 

and their shape 
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