12 research outputs found

    Ecohydrological interactions within “fairy circles” in the Namib Desert: Revisiting the self-organization hypothesis

    Get PDF
    Vegetation patterns such as rings, bands, and spots are recurrent characteristics of resource-limited arid and semiarid ecosystems. One of the most recognizable vegetation patterns is the millions of circular patches, often referred to as “fairy circles,” within the arid grassland matrix extending over hundreds of kilometers in the Namib Desert. Several modeling studies have highlighted the role of plant-soil interactions in the formation of these fairy circles. However, little is known about the spatial and temporal variabilities of hydrological processes inside a fairy circle. In particular, a detailed field assessment of hydrological and soil properties inside and outside the fairy circles is limited. We conducted extensive measurements of infiltration rate, soil moisture, grass biometric, and sediment grain-size distribution from multiple circles and interspaces in the Namib Desert. Our results indicate that considerable heterogeneity in hydrological processes exists within the fairy circles, resulting from the presence of coarser particles in the inner bare soil areas, whereas concentration of fine soil occurs on the vegetated edges. The trapping of aeolian and water-borne sediments by plants may result in the observed soil textural changes beneath the vegetation, which in turn, explains the heterogeneity in hydrological processes such as infiltration and runoff. Our investigation provides new insights and experimental data on the ecohydrological processes associated with fairy circles, from a less studied location devoid of sand termite activity within the circles. The results seem to provide support to the “self-organization hypothesis” of fairy circle formation attributed to the antiphase spatial biomass-water distributions

    Coastal impacts due to sea-level rise

    Get PDF
    Author Posting. © Annual Reviews, 2007. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Earth and Planetary Sciences 36 (2008): 601-647, doi:10.1146/annurev.earth.35.031306.140139.Recent estimates by Intergovermental Panel on Climate Change (2007) are that global sea level will rise from 0.18 to 0.59 m by the end of this century. Rising sea level not only inundates low-lying coastal regions, but it also contributes to the redistribution of sediment along sandy coasts. Over the long-term, sea-level rise (SLR) causes barrier islands to migrate landward while conserving mass through offshore and onshore sediment transport. Under these conditions, coastal systems adjust to SLR dynamically while maintaining a characteristic geometry that is unique to a particular coast. Coastal marshes are susceptible to accelerated SLR because their vertical accretion rates are limited and they may drown. As marshes convert to open water, tidal exchange through inlets increases, which leads to sand sequestration on tidal deltas and erosion of adjacent barrier shorelines

    Lithological anomalies in a relict coastal dune : geophysical and paleoenvironmental markers

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L09707, doi:10.1029/2007GL029767.Ground exposures of migration surfaces (slipfaces) of a relict Holocene coastal dune along the southeastern Baltic Sea coast provide an ideal opportunity for establishing the causes of prominent reflections on geophysical profiles. High-amplitude reflections on high-resolution ground-penetrating radar (GPR) images correlate well with two major lithological anomalies: 1) paleosols developed on dune slipfaces, and 2) slipfaces consisting of heavy-mineral concentrations (HMCs). Paleosols serve as indicators of dune stability, represent datable chronostratigraphic surfaces, and help reconstruct dune paleo-morphology. HMCs have substantially higher magnetic susceptibility values than background quartz-rich sands and, where they are well-developed, can be also used for spatial correlation. Based on their occurrence at the study site, these enriched horizons likely represent periods of increased wind activity (storminess). Multiple HMCs upwind of paleosol P1 (800–670 cal years BP) likely reflect periods of intensified wind activity along the southeast Baltic region during the Medieval Warm Period.This research was funded by the Ocean and Climate Change Institute and The J. Lamar Worzel Assistant Scientist Fund of the Woods Hole Oceanographic Institution

    Paleoenvironmental changes on the northeastern and southwestern Black Sea shelves during the Holocene

    No full text
    Four paleoceanographic events are distinguished during the Holocene based on changes in macro- and microfossil assemblages studied from three sediment cores (Ak 521, 522, 2571) from the outer northeast shelf and from core MAR02-45 situated on the southwest shelf of the Black Sea, west to the Bosphorus. The lithology and fossils were previously studied from cores Ak 521 and Ak 522 and MAR02-45. However, high resolution ostracod analyses from the AMS-14C dated core, Ak 2571, allowed for a revision of the taxonomy and paleoecological interpretation of this microfaunal group on the NE shelf. Downcore changes in the relative abundance of the polyhaline ostracods are found to be contemporaneous in all three cores from the NE shelf. As a result, centennial-millennial scale fluctuations of the bottom-water salinity are resolved in the area. A broader scale examination of paleoenvironmental changes between the NE and SW shelves is also made and the surface to bottom salinity gradient is discussed. An uncalibrated radiocarbon based chronology is used throughout this paper to facilitate comparison with the regional chronostratigraphy of marine transgression and regressions in the Black Sea. The calibrated ages corrected for the changes in reservoir age through the Holocene are also provided. The first paleoceanographic event is associated with the pulse of Mediterranean water previously established at about 9.8–9.3 ka BP. This event is clearly observed in the SW region but not on the NE shelf due to a hiatus in the longest core, Ak 521. The second event is represented on both the NE and SW shelves as a replacement of brackish benthic fauna and surface phytoplankton with marine ones between 8.4 and 6.9 ka BP, indicating a gradual increase in salinity. The third event is marked by opposing trends in surface and bottom-water salinity changes. On the NE shelf, bottom-water salinity rose to modern values by ∌ 6.5 ka BP and then decreased within the interval ∌6.4–5.3 ka BP as recorded by the ostracod assemblages. On the SW shelf, surface-water salinity reached modern values by 5.6 ka BP and remained constant until present day as inferred from the dinoflagellate cyst assemblages. The fourth event is marked by a recurring increase in bottom-water salinity to modern values indicated by the polyhaline ostracod assemblages at ∌ 5.3 ka BP in the NE region, after which only minor salinity fluctuations are observed

    Rapid Magnetic Susceptibility Characterization of Coastal Morphosedimentary Units at Two Insular Strandplains in Estonia

    No full text
    Coastal archives of changing hydrometeorological conditions include mineralogical anomalies, such as heavy-mineral concentrations (HMCs) of variable thickness and intensity, which contain varying ferrimagnetic (e.g., magnetite) fractions. As an effective alternative to laborious mineralogical and granulometric analysis, we present the first set of bulk-volume low-field magnetic susceptibility (MS) databases from beach and dune lithosomes in the Western Estonian archipelago: Harilaid cuspate foreland (westernmost Saaremaa Island) and Tahkuna strandplain (northernmost Hiiumaa Island). Readings were conducted both in situ from trench walls and on core subsamples. At the Tahkuna site, late Holocene beach ridges reveal substantially lower values: quartz-dominated dune sequences grade from 5–20 μSI downward to diamagnetically dominated (−1–7 μSI) beach facies. Values are higher (20–140 μSI) in historically reactivated parabolic dunes that are encroaching southward over the strandplain. At the Harilaid site, four beach dune ridges (height: 2–3 m) that span the past 250–300 years show a general increase in mean MS from 320–850 μSI with decreasing age, with peaks of 1000–2000 μSI below the dune crests (depth: ~0.3–0.6 m) likely related to contemporary wind acceleration during ridge aggradation. The highest mineralogical anomalies range from 2000–5500 μSI in the historic dune sections and exceed 8000 μSI along the actively eroding upper-berm segments, typical of HMCs generated by moderate storms. MS anomalies are likely correlated with high-amplitude electromagnetic signal responses in georadar records and provide useful information for optical luminescence sampling strategies. Our study demonstrates that magnetic susceptibility trends provide a useful means of rapidly assessing relative temporal changes in overall wave/wind climates, help identify and correlate discrete anomalies related to extreme events, serve as local beach/dune boundary indicators, and represent potentially quantifiable paleo-energy indices
    corecore