11 research outputs found
Developing an Australian Melanoma Clinical Outcomes Registry (MelCOR): a protocol paper
Introduction Australia has the highest incidence of melanoma in the world with variable care provided by a diverse range of clinicians. Clinical quality registries aim to identify these variations in care and provide anonymised, benchmarked feedback to clinicians and institutions to improve patient outcomes. The Australian Melanoma Clinical Outcomes Registry (MelCOR) aims to collect population-wide, clinical-level data for the early management of cutaneous melanoma and provide anonymised feedback to healthcare providers.
Methods and analysis A modified Delphi process will be undertaken to identify key clinical quality indicators for inclusion in the MelCOR pilot. MelCOR will prospectively collect data relevant to these quality indicators, initially for all people over the age of 18 years living in Victoria and Queensland with a melanoma diagnosis confirmed by histopathology, via a two-stage recruitment and consent process. In stage 1, existing State-based cancer registries contact the treating clinician and provide an opportunity for them to opt themselves or their patients out of direct contact with MelCOR. After stage 1, re-identifiable clinical data are provided to the MelCOR under a waiver of consent. In stage 2, the State-based cancer registry will approach the patient directly and invite them to opt in to MelCOR and share identifiable data. If a patient elects to opt in, MelCOR will be able to contact patients directly to collect patient-reported outcome measures. Aggregated data will be used to provide benchmarked, comparative feedback to participating institutions/clinicians.
Ethics and dissemination Following the successful collection of pilot data, the feasibility of an Australia-wide roll out will be evaluated. Key quality indicator data will be the core of the MelCOR dataset, with additional data points added later. Annual reports will be issued, first to the relevant stakeholders followed by the public. MelCOR is approved by the Alfred Ethics Committee (58280/127/20)
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Methods of melanoma detection and of skin monitoring for individuals at high risk of melanoma: new Australian clinical practice
INTRODUCTION: The evidence-based national clinical practice guidelines for the management of cutaneous melanoma published in 2008 are currently being updated. This article summarises the findings from multiple chapters of the guidelines on different methods of melanoma detection and of monitoring the skin for patients at high risk of melanoma. Early detection of melanoma is critical, as thinner tumours are associated with enhanced survival; therefore, strategies to improve early detection are important to reduce melanoma-related mortality. MAIN RECOMMENDATIONS: Clinicians who perform skin examinations for the purpose of detecting skin cancer should be trained in and use dermoscopy. The use of short term sequential digital dermoscopy imaging to detect melanomas that lack dermoscopic features of melanoma is recommended to assess individual melanocytic lesions of concern. The use of long term sequential digital dermoscopy imaging to detect melanomas that lack dermoscopic features of melanoma is recommended to assess individual or multiple melanocytic lesions for routine surveillance of high risk patients. The use of total body photography should be considered in managing patients at increased risk for melanoma, particularly those with high naevus counts and dysplastic naevi. There is insufficient evidence to recommend the routine use of automated instruments for the clinical diagnosis of primary melanoma. MANAGEMENT OVERVIEW: Determining the relative indications for each diagnostic method and how each method should be introduced into the surveillance of a patient requires careful consideration and an individualised approach
Feasibility and acceptability of Fear-Less: a stepped-care program to manage fear of cancer recurrence in people with metastatic melanoma
Immunotherapies and targeted therapies have revolutionised treatment of metastatic melanoma and improved survival rates. However, survivors treated with novel therapies are vulnerable to high levels of fear of cancer recurrence or progression (FCR). Existing FCR interventions have rarely been trialled in people with advanced cancer. The current study aimed to evaluate the acceptability and feasibility of Fear-Less: a stepped-care model to treat FCR in people with metastatic melanoma treated with immunotherapy or targeted therapy. Sixty-one outpatients with metastatic melanoma were screened using the Fear of Cancer Recurrence Inventory Short Form (FCRI-SF) and Fear of Progression Questionnaire Short Form (FoP-Q-SF). Survivors with subthreshold FCR were stratified to a self-management intervention while those with clinical levels of FCR were provided with an individual therapy, Conquer Fear. Survivor experience surveys and rescreening were administered post-intervention completion. Results indicated that Fear-Less was an acceptable and feasible FCR intervention. Results provided preliminary support for the potential impact of Fear-Less in reducing FCR. Fear-Less is a promising first step in providing an acceptable and feasible stepped-care model to treat FCR in survivors with metastatic disease
Follow-on rifaximin for the prevention of recurrence following standard treatment of infection with clostridium fifficile (RAPID): a randomised placebo controlled trial
©2018 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/gutjnl-2018-316794Background Clostridium difficile infection (CDI) recurs after initial treatment in approximately one in four patients. A single-centre pilot study suggested that this could be reduced using ’follow-on’ rifaximin treatment. We aimed to assess the efficacy of rifaximin treatment in preventing recurrence.
Methods A multisite, parallel group, randomised, placebo controlled trial recruiting patients aged ≥18 years immediately after resolution of CDI through treatment with metronidazole or vancomycin. Participants received either rifaximin 400mg three times a day for 2weeks, reduced to 200mg three times a day for a further 2weeks or identical placebo. The primary endpoint was recurrence of CDI within 12 weeks of trial entry.
Results Between December 2012 and March 2016, 151 participants were randomised to either rifaximin or placebo. Primary outcome data were available on 130. Mean age was 71.9 years (SD 15.3). Recurrence within 12 weeks was 29.5% (18/61) among participants allocated to placebo compared with 15.9% (11/69) among those allocated to rifaximin, a difference between groups of 13.7% (95% CI −28.1% to 0.7%, p=0.06). The risk ratio was 0.54 (95% CI 0.28 to 1.05, p=0.07). During 6-month safety follow-up, nine participants died in each group (12%). Adverse event rates were similar between groups.
Conclusion While ’follow-on’ rifaximin after CDI appeared to halve recurrence rate, we failed to reach our recruitment target in this group of frail elderly patients, so the estimated effect of rifaximin lacks precision. A meta-analysis including a previous trial suggests that rifaximin may be effective; however, further, larger confirmatory studies are needed.The trial was sponsored by the University of Nottingham, was coordinated from the Nottingham Clinical Trials Unit and was supported by the National Institute for Health Research Clinical Research Network
Stratified analyses refine association between TLR7 rare variants and severe COVID-19
Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway