7,202 research outputs found

    Supernova remnants and gamma-ray sources

    Get PDF
    A review of the possible relationship between gamma-ray sources and supernova remnants (SNRs) is presented. Particular emphasis is given to the analysis of the observational status of the problem of cosmic ray acceleration at SNR shock fronts. All positional coincidences between SNRs and unidentified gamma-ray sources listed in the Third EGRET Catalog at low Galactic latitudes are discussed on a case by case basis. For several coincidences of particular interest, new CO(J=1-0) and radio continuum maps are shown, and the mass content of the SNR surroundings is determined. The contribution to the gamma-ray flux observed that might come from cosmic ray particles (particularly nuclei) locally accelerated at the SNR shock fronts is evaluated. We discuss the prospects for future research in this field and remark on the possibilities for observations with forthcoming gamma-ray instruments.Comment: Final version of a review article, to appear in the Physics Reports (82 pages, 31 figures). Figures requiring high quality are just too large and too many to be included here. Please download them from http://www.angelfire.com/id/dtorres/down3.htm

    Supernova-Remnant Origin of Cosmic Rays?

    Get PDF
    It is thought that Galactic cosmic ray (CR) nuclei are gradually accelerated to high energies (up to ~300 TeV/nucleon, where 1TeV=10^12eV) in the expanding shock-waves connected with the remnants of powerful supernova explosions. However, this conjecture has eluded direct observational confirmation^1,2 since it was first proposed in 1953 (ref. 3). Enomoto et al.^4 claim to have finally found definitive evidence that corroborates this model, proposing that the very-high-energy, TeV-range, gamma-rays from the supernova remnant (SNR) RX J1713.7-3946 are due to the interactions of energetic nuclei in this region. Here we argue that their claim is not supported by the existing multiwavelength spectrum of this source. The search for the origin(s) of Galactic cosmic ray nuclei may be closing in on the long-suspected supernova-remnant sources, but it is not yet over.Comment: 4 pages, 1 Figur

    Did Egret Detect Distant Supernova Remnants?

    Get PDF
    It might be thought that supernova remnants (SNRs) more distant than a few kiloparsec from Earth could not have been detected by the EGRET experiment. This work analyzes the observational status of this statement in the light of new CO studies of SNRs.Comment: Accepted for publication in Advances in Space Research, in High Energy Studies of Supernova Remnants and Neutron Stars, eds. W. Becker and W. Hermsen (2003

    Leading quantum gravitational corrections to QED

    Full text link
    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two massive fermions with electric charge.Comment: 14 pages, 29 figures, format RevTex

    Prevalence of mixed genotype hepatitis C virus infections in the UK as determined by genotype‐specific PCR and deep sequencing

    Get PDF
    The incidence of mixed genotype hepatitis C virus infections in the UK is largely unknown. As the efficacy of direct acting antivirals is variable across different genotypes, treatment regimens are tailored to the infecting genotype, which may pose issues for the treatment of underlying genotypes within undiagnosed mixed genotype HCV infections. There is therefore a need to accurately diagnose mixed genotype infections prior to treatment. PCR-based diagnostic tools were developed to screen for the occurrence of mixed genotype infections caused by the most common UK genotypes, 1a and 3, in a cohort of 506 individuals diagnosed with either of these genotypes. The overall prevalence rate of mixed infection was 3.8% however this rate was unevenly distributed, with 6.7% of individuals diagnosed with genotype 3 harbouring genotype 1a strains and only 0.8% of samples from genotype 1a patients harbouring genotype 3 (p<0.05). Mixed infection samples consisted of a major and a minor genotype, with the latter constituting less than 21% of the total viral load and, in 67% of cases, less than 1% of the viral load. Analysis of a subset of the cohort by Illumina PCR-next generation sequencing resulted in a much greater incidence rate than obtained by PCR. This may have occurred due to the non-quantitative nature of the technique and despite the designation of false positive thresholds based on negative controls

    Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    Get PDF
    A 50 ksec Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious diffuse X-ray counterpart. However, 240 Pointlike X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 36 are massive stars and 2 may be radio emitters. That the HEGRA source is a composite, having as counterpart the multiple point-like X-ray sources we observe, cannot be ruled out. Indeed, the distribution of point-like X-ray sources appears non-uniform and concentrated broadly within the extent of the TeV source region. We offer a hypothesis for the origin of the very high energy gamma-ray emission in Cyg OB2 based on the local acceleration of TeV range cosmic rays and the differential distribution of OB vs. less massive stars in this association.Comment: Substantially revised version; incorporates referee suggestions & expanded discussio

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    Adaptation and Recovery of a Styrene‐Acrylic Acid Copolymer Surface to Water

    Get PDF
    Drops sliding down an adaptive surface lead to changes of the dynamic contact angles. Two adaptation processes play a role: 1) the adaptation of the surface upon bringing it into contact to the drop (wetting) and 2) the adaptation of the surface after the drop passed (dewetting). In order to study both processes, the authors investigate samples made from random styrene (PS)/acrylic acid (PAA) copolymers, which are exposed to water. Sum-frequency generation spectroscopy and tilted-plate measurements indicate that during wetting, the PS segments displace from the interface, while PAA segments are enriched. This structural adaptation of the PS/PAA random copolymer to water remains after dewetting. Annealing the adapted polymer induces reorientation of the PS segments to the surface
    corecore