756 research outputs found
Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti
Stable relocation of the radial head without annular ligament reconstruction using the Ilizarov technique to treat neglected Monteggia fracture: two case reports
<p>Abstract</p> <p>Introduction</p> <p>A Monteggia facture dislocation is not an uncommon injury, and the diagnosis can often be missed. Long-term follow-up of untreated Monteggia fracture dislocations reveals development of premature arthritis, pain, instability, and loss of pronation and supination. Methods involving annular ligament reconstruction require post-operative immobilization and use of transcapitellar pinning for maintenance of reduction, and thus a delay in rehabilitation. The literature reports satisfactory results with methods that involve ulnar osteotomy and open reduction of the radial head without annular ligament reconstruction. We used the Ilizarov method in two cases with neglected Monteggia fracture dislocations to stably reduce the radial head without open reduction and annular ligament reconstruction.</p> <p>Case presentation</p> <p>We report two cases of neglected Monteggia fracture dislocation, in two Kashmiri boys aged four and six years. Using ulnar osteotomy with distraction osteogenesis, we were able to relocate the radial head gradually and maintain the reduction without a requirement for open reduction and annular ligament reconstruction.</p> <p>Conclusion</p> <p>Distraction lengthening and hyperangulation in different planes by use of the Ilizarov technique effectively reduces the radial head without open reduction and annular ligament reconstruction.</p
Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge
BACKGROUND: The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. METHODOLOGY/FINDINGS: Exposure of midges to 'dry' conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT(50) value for strain V275 was 1.42 days compared to 2.21-3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (10(8)-10(11) conidia m(-2)) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to 'dry' conidia and 'wet' conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. 'Dry' conidia were more effective than 'wet' conidia, causing 100% mortality after 5 days. CONCLUSION/SIGNIFICANCE: This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of 'dry' conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease
Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death
Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host
Expression of core antigen of HCV genotype 3a and its evaluation as screening agent for HCV infection in Pakistan
<p>Abstract</p> <p>Background</p> <p>Pakistan is facing a threat from hepatitis C infection which is increasing at an alarming rate throughout the country. More specific and sensitive screening assays are needed to timely and correctly diagnose this infection.</p> <p>Methods</p> <p>After RNA extraction from specimen (HCV-3a), cDNA was synthesized that was used to amplify full length core gene of HCV 3a. After verification through PCR, DNA sequencing and BLAST, a properly oriented positive recombinant plasmid for core gene was digested with proper restriction enzymes to release the target gene which was then inserted downstream of GST encoding DNA in the same open reading frame at proper restriction sites in multiple cloning site of pGEX4t2 expression vector. Recombinant expression vector for each gene was transformed in <it>E. coli </it>BL21 (DE3) and induced with IPTG for recombinant fusion protein production that was then purified through affinity chromatography. Western blot and Enzyme Linked Immunosorbant Assay (ELISA) were used to detect immuno-reactivity of the recombinant protein.</p> <p>Results</p> <p>The HCV core antigen produced in prokaryotic expression system was reactive and used to develop a screening assay. After validating the positivity (100%) and negativity (100%) of in-house anti-HCV screening assay through a standardized panel of 200 HCV positive and 200 HCV negative sera, a group of 120 serum specimens of suspected HCV infection were subjected to comparative analysis of our method with commercially available assay. The comparison confirmed that our method is more specific than the commercially available assays for HCV strains circulating in this specific geographical region of the world and could thus be used for HCV screening in Pakistan.</p> <p>Conclusion</p> <p>In this study, we devised a screening assay after successful PCR amplification, isolation, sequencing, expression and purification of core antigen of HCV genotype 3a. Our developed screening assay is more sensitive, specific and reproducible than the commercially available screening assays in Pakistan.</p
Surviving pediatric intensive care: physical outcome after 3 months
Objective: This study investigated the prevalence and nature of physical and neurocognitive sequelae in pediatric intensive care unit ( PICU) survivors. Design and setting: Prospective follow-up study 3 months after discharge from a 14-bed tertiary PICU in The Netherlands. Patients and participants: The families of 250 previously healthy children unexpectedly admitted to the PICU were invited to visit the outpatient follow-up clinic for structured medical examination of the child 3 months after discharge; 186 patients were evaluated. Measurements and results: Pediatric Cerebral Performance Category ( PCPC) and Pediatric Overall Performance Category ( POPC) values were determined at PICU discharge, at the outpatient follow-up clinic, and retrospectively before admission to the PICU. We found that 69% of children had physical sequelae. In 30% of cases these were caused by a previously unknown illness and in 39% by acquired morbidity. In 8% of the children the acquired morbidity was related to complications from PICU procedures. Three months after discharge 77% of the children had normal PCPC scores and 31% had normal POPC scores. Conclusions: Our results indicate that PICU survival may be associated with substantial physical sequelae. Structured follow-up research, preferably by multicenter studies, is warranted in PICU survivor
Combination antibiotic therapy for community-acquired pneumonia
Community-acquired pneumonia (CAP) is a common and potentially serious illness that is associated with morbidity and mortality. Although medical care has improved during the past decades, it is still potentially lethal. Streptococcus pneumoniae is the most frequent microorganism isolated. Treatment includes mandatory antibiotic therapy and organ support as needed. There are several antibiotic therapy regimens that include β-lactams or macrolides or fluoroquinolones alone or in combination. Combination antibiotic therapy achieves a better outcome compared with monotherapy and it should be given in the following subset of patients with CAP: outpatients with comorbidities and previous antibiotic therapy, nursing home patients with CAP, hospitalized patients with severe CAP, bacteremic pneumococcal CAP, presence of shock, and necessity of mechanical ventilation. Better outcome is associated with combination therapy that includes a macrolide for wide coverage of atypical pneumonia, polymicrobial pneumonia, or resistant Streptococcus pneumoniae. Macrolides have shown different properties other than antimicrobial activity, such as anti-inflammatory properties. Although this evidence comes from observational, most of them retrospective and nonblinded studies, the findings are consistent. Ideally, a prospective, multicenter, randomized trial should be performed to confirm these findings
- …