108 research outputs found

    Wave chaotic behaviour generated by linear systems

    Get PDF
    It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time

    Saccharomyces boulardii Improves Intestinal Cell Restitution through Activation of the α2β1 Integrin Collagen Receptor

    Get PDF
    Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2β1 integrin activity was assessed using adhesion assays and the analysis of α2β1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2β1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2β1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases

    Results of implementation of viral hepatitis B elimination program in the North-West Russia

    Get PDF
    Introduction. Vaccination contributed to reduce the incidence of acute hepatitis B in the territories of the North-West Russia. The urgency of this problem remains due to the high incidence of chronic hepatitis B. This accounted for the need to develop a hepatitis B elimination program in the district discussed that was approved in 2013 by the head of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. Objective is to characterize the results of the program for the elimination of acute hepatitis B virus implemented in the North-Western Federal District. Materials and methods. The 2010–2020 incidence rate of acute and chronic hepatitis B virus (HBV) infection in the regions of the North-West Russia was carried out. To determine HBV genotypes and subgenotypes, 160 blood plasma samples from patients with acute hepatitis B were studied using molecular genetic methods (PCR, sequencing). The prevalence of latent hepatitis B in various population groups was assessed. The 2016–2020 hepatitis B vaccination coverage and relevant serological monitoring in adults was carried out. Results. While implementing the program, it was found that the incidence rate of acute hepatitis B in the district decreased by 4.5-fold, revealing in 2020 no cases of the disease in 5 regions, with incidence rate in the 6 subfederal units being lower than 1.0 per 100,000 population. Moreover, the incidence rate for chronic hepatitis B decreased by 2.6 times. The 2020 vaccination coverage of children under 17 and adults in all territories comprised more than 95% and 90%, respectively. In addition, it was shown the circulation of genotypes D and A of hepatitis B virus is dominated by genotype D (91.8%), subgenotype D2 (47.8%). The prevalence of latent hepatitis B among migrants was 6.5%, pregnant women — 4.9%, hemodialysis patients — 1.7%. Conclusion. Implementation of the program on elimination of acute viral hepatitis B in the territory of the North-West Russia contributed to raise in the vaccination coverage in adult population and lowered incidence rate of acute and chronic HBV infection

    Pion production under the action of intense ultrashort laser pulse on a solid target

    Full text link
    Two-dimensional “particle-in-cell” modeling was carried out to determine the laser intensity threshold for pion production by protons accelerated by the relativistically strong short laser pulses acting on a solid target. The pion production yield was determined as a function of laser intensity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45801/1/11448_2006_Article_1758.pd

    Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules

    Get PDF
    RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis

    Regulation of the Escherichia coli HipBA Toxin-Antitoxin System by Proteolysis

    Get PDF
    Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon- background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence

    The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates

    Get PDF
    Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, ΔrelB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection

    Genomes of the Most Dangerous Epidemic Bacteria Have a Virulence Repertoire Characterized by Fewer Genes but More Toxin-Antitoxin Modules

    Get PDF
    We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls").We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls.We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution
    corecore