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Abstract: It is shown that regimes with dynamical chaos are inherent not only to nonlinear 
system but they can be generated by initially linear systems and the requirements for chaotic 
dynamics and characteristics need further elaboration. Three simplest physical models are 
considered as examples. In the first, dynamic chaos in the interaction of three linear 
oscillators is investigated. Analogous process is shown in the second model of 
electromagnetic wave scattering in a double periodical inhomogeneous medium occupying 
half-space. The third model is a linear parametric problem for the electromagnetic field in 
homogeneous dielectric medium which permittivity is modulated in time.

Keywords: electromagnetic linear problems; transients; chaos.

1. INRODUCTION
It is generally accepted that chaotic dynamics and chaotic characteristics are inherent to 
nonlinear systems only. Moreover, the emergence of dynamic chaos requires the appearance 
of a local instability in the system and this instability has to be nonlinear (Lichtenberg et al., 
1983). In this paper we show that the latter requirement needs further elaboration. We pay 
attention to the fact that the equations of the classical mechanics are coarsening images of the 
quantum mechanical equations that are linear. Similarly, the equations of geometrical optics,
which describe the chaotic dynamics of light beams, are also derived as coarsening the 
Maxwell's equations that are linear too.  The change of the dependent variables can transform 
the initially linear equations into nonlinear ones that can have chaotic solutions and, therefore, 
should be investigated accordingly. This fact seems to escape researches’ attention, 
nevertheless, it should be taken into account in the analysis of a wide range of physical 
processes.
In this paper we consider the simplest linear physical models where the described peculiarity 
in the dynamics can be realized and we show that some physical variables characterising such 
systems can exhibit chaotic dynamics (see also (Buts, 2006)). Importantly, these types of
models are often used in the description of various physical processes.  
First, we consider three linear interacting oscillators.  Under some approximations the same 
equations can be used to model electromagnetic wave scattering by double periodical 
inhomogeneous medium occupying a half-space. The first period of inhomogeneity 
corresponds to such a reciprocal lattice vector that the incident wave scattered by this period
of inhomogeneity generates a wave of the minus first order diffraction. Conditions for the 
excitation of the same wave diffraction by the second period of the inhomogeneity are 
realized with some detuning. Thus, we have a case of three-wave dynamical diffraction. 
Equations describing the dynamics of the complex amplitudes of these three interacting waves 
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are linear. Therefore, their dynamics and all characteristics are, in general, regular. However, 
in the case of a weak coupling between the waves a system of reduced equations for the real 
amplitudes and phases can be obtained. This reduced system is nonlinear and it is simpler 
than the initial one. This allows to obtain analytical criteria for the onset of the dynamical 
chaos. This system has been investigated analytically and numerically in the present paper. 
Qualitative agreement between the analytical and numerical results is obtained, namely, a 
stochastic instability develops as soon as the conditions for the intersections of the 
heteroclinic trajectories are fulfilled. In this case the spectra broaden, the correlation function 
decreases and the real part of the maximal Lyapunov exponent becomes positive.
Second, we show that some important characteristics in the solutions of pure linear problems 
can have chaotic dynamics. It is caused by the fact that these characteristics themselves are 
nonlinear. As an example, a linear parametric problem of the electromagnetic field in the 
homogeneous dielectric medium which permittivity is modulated in time beginning from 
some moment is considered. If the initial field is a plane monochromatic wave and the 
modulation is in the form of rectangular pulses then the problem has an exact analytical 
solution which describes the temporal process of the wave transformation. Since, under the 
modulation, the permittivity changes abruptly from the initial value to the new one and back 
then the transformation process consists of a progressive repetition of the known effect of 
each wave splitting onto a pair of forward and backward propagating waves at each jump of 
the permittivity. Relationships between these wave amplitudes are obtained exactly in 
analytical form. They reveal a controlling sequence which determines the whole behaviour of 
the relations with time. The analysis shows that the temporal course of this sequence can have 
distinctly non-regular behaviour, which chaotic character is confirmed by the Lamerey 
diagram, the calculation of the Hurst exponent, the signal complexity, and the Lyapunov 
exponent. It is shown that the Hurst exponent takes the values corresponding to the white 
noise, the signal complexity rises and the Lyapunov exponent becomes positive.

2. DYNAMIC CHAOS IN THE INTERACTION OF THREE LINEAR 
OSCILLATORS

Here we consider the simplest but very important physical system of three coupled linear 
oscillators, in which the regime of chaotic dynamics can exist. The system Hamiltonian has 
the form:

2 2
2 2 2

0
0 1

/ 2 / 2i i i i i
i i

H p q q q 
 

      (1)

We consider the case when two oscillators are identical but the frequency of the third one 
differs slightly from the frequency of the other two: 1 0 2,          . We also 

assume that the interaction coefficients are small. In this case the dynamics is described by the 
following system of equations:

 0 0 1 1 2 2 1 1 1 0 2 2 2 0, , 1q q q q q q q q q q                 , (2)

where / , , 2 /q dq d t         ,  2/i i    ,   1, 1i   , and the terms 

proportional to 2( / )   are neglected. The dimensionless coefficients of the interaction are 
introduced in (2). 
Taking into account the fact that the right sides (the factors of connection) in the equations (2)
are small the solutions can be sought in the form:

 ( )expi i iq A i t  , (3)
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where the dependence of the complex amplitudes on time is caused by the connection 
between the oscillators. If this connection is small then the amplitudes are slow varying 
functions and the averaging method can be used. As a result we obtain the following system 
of reduced equations for the amplitudes: 

0 1 1 2 22 exp( )iA A A i             

1 1 02iA A 

2 2 02 exp( )iA A i    . (4)

The connection between the complex amplitudes follows from (4)

 2 2 2
0 1 2 2 0 22 sin

d
A A A A A

d
 


      

It follows from this equation that the system (4) has only one degree of freedom if detuning of 
the frequency is equal to zero ( 0  ). Therefore, the development of dynamical chaos in this 
system is impossible. In other cases the detuning determines a distance between nonlinear 
resonances. 
For further analysis we represent the complex amplitudes in the form:

( ) ( )exp( ( ))i iA a i    (5)

where ia ,  i  are real amplitudes and real phases.

Substitution of (5) into (4) gives the following system of equations:     

       0 1 1 2 2 1/ 2 sin / 2 sina a a         ,

   1 1 0/ 2 sina a   , 

   2 2 0 1/ 2 sina a  

       0 1 2
1 2 1

1 0 0

/ 2 cos / 2 cos
a a a

a a a
 

   
        

   
 ,

       0 2 1
1 2 1 1

2 0 0

/ 2 cos / 2 cos
a a a

a a a
  

   
         

   
 , (6)

where  1 0 1 2 0,           .

The system (6) is a simplified one compared to the initial system (2) but it is nonlinear and the 
dynamics of this system can be chaotic. 

2.1 Analytical criterion for the onset of dynamical chaos 
The analytical conditions for the dynamics of the nonlinear system (6) to be chaotic are of 
great practical interest. To find these conditions we initially assume that there are only two 
oscillators, the first and the second, and the third one is absent ( 2 0A  ). In this case it follows 

from (4) that
2 2
0 1A A const  , (7)

therefore, the dynamics of the complex amplitudes 0A  and 1A is very simple. They oscillate 

with the frequency / 2 . On the contrary, the dynamics of the real amplitudes ia and the real 

phases  and 1 is more complex. Indeed, the equation for the phase  is nonlinear
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     
2 22 2 2 22

0 1 0 11
2 2
0 1

sin 2
8

a a a a

a a

    
    
 
 

 (8)

and represents a well known equation for the mathematical pendulum. Thus, the behavoiur of 
the real amplitudes ia  is known qualitatively and consists of the following. Let only the first 
oscillator have non-zero energy at the initial moment of time.  Then the oscillation amplitude 
of the second one is equal to zero. After some time interval ( 1~ 2 /  ) the first oscillator 
amplitude will become zero, while the second oscillator amplitude will achieve the maximum
value which is equal to 1. Therefore, the absolute value of the expression in the square 
brackets in (8) is always greater than 1. Consequently, the minimal width of the nonlinear 
resonance can be estimated as 1~  . 

Let us consider now the situation when the second oscillator is absent ( 1 0A  ) and there is an 

interaction of the first and the third oscillators. In this case the equation for the phase looks 
like

       
2 22 2 2 22 2 2

0 2 0 22 2 0 2
1 1 12 2

0 2 0 2

sin 2 sin
8 2

a a a a a a

a a a a

                  

 . (9)

The equation (9) differs from the equation (8) by the presence of the last term which is caused 
by detuning   between the frequencies. The equation (9) represents the equation of nonlinear 
oscillator also but its structure is considerably more complex than the structure of the 
nonlinear equation (8).  However, the qualitative dynamics of the real amplitudes ia  are also 

known. Therefore, as in the previous case, we can estimate the minimal width of the nonlinear 
resonance as 1 2~  .

It is natural to expect that when the nonlinear resonances are overlapped, i.e. when the 
condition  1 2    is fulfilled, the dynamics of the system (6) will be chaotic. In the next 

section we show that the numerical investigations confirm this conclusion. 

2.2 Numerical investigations
The systems of equations (2), (4) and the system (6) were investigated numerically. In all 
cases the dynamics of the system described by the original systems of equations (2), (4) is
regular: the spectrum is narrow enough; the correlation functions oscillate, but their 
amplitudes do not decrease; the maximum Lyapunov index is very small ( 410  ).   

The dynamics of the system (6) is, however, qualitatively different. If the conditions for 
overlapping the nonlinear resonances are fulfilled then the dynamics becomes chaotic. Fig. 1-
5 represent the numerical results obtained for the system parameters 0.017  , 1 0.02  , 

2 0.012  , which provide the fulfilment of the conditions for the onset of the dynamical

chaos. The time behaviour of the real amplitude 0a  in Fig. 1 and the phase   in Fig. 2 show 

significant jumps of the phase caused by passing of the real amplitudes through their minimal 
values. 
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Fig.1. The evolution of the real amplitude of the first oscillator at 0.017  , 1 0.02  , 

2 0.012   . The conditions for the chaos onset are fulfilled.

Fig.2. The dynamics of the phase at 0.017  , 1 0.02  , 2 0.012  .

The spectrum and the autocorrelation function for the first oscillator amplitude are shown in 
Fig. 3 and Fig. 4. The spectrum is significantly broader in comparison with the case of the 
original system. The correlation function decreases during the whole time interval of 
observations. Thus, the dynamical chaos regime is realized for these values of the system 
parameters. It is confirmed by the maximum Lyapunov index. In Fig. 5 this index is plotted as 

Fig.3. The spectrum of the first oscillator .



6

Fig.4.  The autocorrelation function.

a function of the initial points locations on the ( 0,a ) plane. The Lyapunov index is positive 

in the whole area considered.

.
Fig.5 Main Lyapunov index as function of the location initial points in phase space at 

0.11 2   ,  0.02  .

3. WAVES SCATTERING IN THE MEDIUM WITH WEAK PERIODIC 
INHOMOGENEOUS 

Properties similar considered case of regular or chaotic dynamics in the system of three linear 
coupled oscillators take place in a large number of other linear systems. Here we consider a 
model of an electromagnetic wave scattering on a non-uniform dielectric medium filling the 
half-space ( 0z   for unambiguity).  The wave comes from the upper ( 0z  ) homogeneous 
half-space. The wave electrical field satisfies the well known wave equation
   2 0E k E   , (10)
where /k c .
We consider the case when the permittivity is described by the formula

 
2

1

1 cosi i
i

r  


     
, (11)
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It is assumed that the heterogeneity is small, 1i  . In this case the electromagnetic wave 
scattering gives diffracted waves of the minus first order of diffraction. The complete field 
can be represented in the form 

 
2 2

0 0

( ) expi i i
i i

E E A z ik r
 

   
 

. (12)

The first term in (12) corresponds to the falling wave, the second and third ones correspond to 
the minus first order of diffraction by the first and the second heterogeneities accordingly. Let 
the relation between the wave vectors satisfy the following expressions 

1 0 1k k  
  

,    2 0 2k k    
  

,     0,0, 


. (13)

In this model we consider the case when all the wave amplitudes depend only on the 
coordinate z directed into the lower half- space. Substituting (11) and (12) into the wave 
equation (10) and applying averaging to find the slow varying amplitudes of the interactive 
waves we obtain the following system of equations:

0 1 1 2 22 exp( )iA A A i z     ,   

 1 1 0 0 12 /z ziA A k k   , (14)

 2 2 0 0 22 / exp( )z ziA A k k i z     ,

where /A dA dz   and the following dimensionless parameters and independent variables are 
introduced: 1 1 0/ zk k   ,   2 2 0/ zk k   ,  / k  ,   z k z  .

The system (14) is similar to the system of equations (4) if the derivative with respect to time
is substituted by the derivative with respect to the coordinate z. Therefore, the dynamics of 
the systems (4) and (14) has the same qualitative description. They both have the areas of 
parameters, in which their behaviour is chaotic. The chaos criterion, for example for the 
system (14), in the symmetric case ( 1 2    ) is given by the inequality: 

2
1 2( ) / 4 z zk k k     . (15)

4. PARAMETRIC PHENOMENON
As the third example, a linear parametric problem for the electromagnetic field in the 
homogeneous dielectric medium which permittivity is modulated in time beginning from 
some moment is investigated. Parametric phenomena in active media have been attracting 
much attention for a long time in connection with the transformation of electromagnetic 
waves by the time variation of the medium parameters. In the systems with distributed 
parameters main features of the wave transformation by the medium nonstationarity can be 
revealed when a simple law changes the medium parameters such that an exact solution of the 
problem can be constructed. 
In this paper the electromagnetic wave transformation in a medium which parameters undergo 
changes in a form of a finite packet of periodic rectangular pulses is considered. Regularity of 
the transformation is estimated by three characteristics, the Hurst's index (Hurst et al., 1965), 
the signal complexity (Crutchfield et al., 1989) and the Lyapunov exponent (Lichtenberg et 
al., 1983; Kuznetsov, 2000).
Such a model allows to carry out the exact investigation of the process. If the initial field is a 
plane monochromatic wave and the modulation is in the form of rectangular pulses then the 
problem has an exact analytical solution which describes the temporal process of the wave 
transformation. Since under the modulation the permittivity changes abruptly from the initial 
value to the new one and back then the transformation process consists of a progressive 
repetition of the known effect of each wave splitting onto a pair waves at each jump of the 
permittivity. These waves propagate in the opposite directions and their frequencies change 
by a jump periodically also from the initial value to the new one and back. The wave 
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amplitudes undergo sophisticated transformations with the increase of time (the number of the 
permittivity jumps). However, they are the solutions to the linear electrodynamics wave 
equations with variable coefficients. Since the essential feature in this process is the wave 
splitting (the wave reflection in time) then it is interesting to observe a change of relationship 
between the amplitudes of the forward and backward waves in the transformation process. 
These relations are obtained exactly in an analytical form.

4.1. Wave transformation under medium modulation

4.1.1.Step by step wave transformation
We consider an unbounded dielectric dissipative medium, the permittivity and conductivity of 
which are modulated according to the law of a finite packet of N  rectangular periodic pulses:

 

 

1 1
1

1 1
1

( ) ( ) ( ( 1) ) ( ( 1) )

( ) ( ( 1) ) ( ( 1) )

N

k

N

k

t t k T t T k T

t t k T t T k T

     

   





        

      




(16)

Here, ( )t  is the Heaviside unit function, T  is the duration of the period of the parameters 

change, 1T  is the duration of the disturbance interval, in which the medium permittivity and 

conductivity receive new magnitudes 1  and 1 . Further, we normalize all time variables to a 

frequency   of the initial wave, t t . This wave exists before zero moment of time, the 
moment when the modulation commences, and is given by the function

0 ( , ) exp[ ( )]E t x i t kx  in normalized variables. Each time jump of the medium properties 

changes the electromagnetic field, such that it is described by the functions nE  on the 

disturbance intervals and by nF  on the inactivity intervals where the medium permittivity and 

conductivity return to the initial magnitudes.
After beginning the modulation by the disturbance interval the initial wave is splitting into 
two, forward and backward, waves   1 1 1exp exp( ) exp( )E st ikx C iq t D iq t      with new 

amplitudes and the new normalized frequency 
1

2 2 2( )q a s   where 2
1/a   , 1 0/s    , 

and 0  is the vacuum permittivity. On the remaining undisturbed interval of this first 

modulation period the field splitting into two waves remains 

 1 1 1exp( ) exp( ) exp( )F ik A i t B i t     but the frequency returns to the original one. 

The field on the other disturbance intervals consists also of two, forward and backward, 
waves  exp( ) exp( ) exp( )n n nE st ikx C iq t D iq t      of changed frequency while the field 

on the inactivity intervals consists of two waves also 

 exp( ) exp( ) exp( )n n nF ikx A i t B i t     but of the unchanged frequency. Therefore, the 

transformed field at any moment t in the N-th modulation period is given by the formula

 1 1 1 1

( , ) ( ( 1) )

( ( 1)( )) ( ( 1)( )) ( )

N

n
n

N

n n n
n

E t x E t n T

E t nT n T T F t nT n T T F t nT



  

   

          




(17)

The exact expressions for the direct and the inverse secondary wave amplitudes are given in 
(Nerukh, 1999; Ruzhytska, 2003).



9

4.1.2.Parameters of transformation
Wave reflection in time can be characterized by a temporal reflectance as the ratio of the 
backward (inverse) and forward (direct) wave amplitudes. In (Nerukh A, 1999; Ruzhytska, 
2003) it is shown that these ratios are determined by the expressions:
on the disturbance intervals 

2( 1) 2 1 2 1 21 1 2 22

2 1 2 1 11 1 2 12

{ ( ) }

{ ( ) }
i N qTN N

N
N N

D p p p r p p
w e

C p p p r p p

 
 

  



  
 

  
; (18)

on the inactivity intervals 

2 1 2

2 1 2( )
i NTN

N
N N

B p p
p e

A p p p r
 

 
, 2N  . (19)

Here, 1 /p h m  , 2
2 ( *) /( * )p h m m hh m    , 1 exp( )A m iT  , 1 exp( )B h iT  , 

11 1q is    , 12 1q is    , 21 1q is    , 22 1q is    , and 

2
1 1 1 1

1
2 cos( ) ( 1)sin( ) exp[ ( )]

2
m q qT i a qT sT i T T

q
        (20)

`  2
1 1 1

1
1 2 sin( )exp[ ( )]

2
h i a i s qT sT i T T

q
      . (21)

As it follows from (18) and (19) the behaviour of the ratios Nw  and Np is governed by the 
sequence

2 2
1 4 /(4 )N Nr u u r   , (22)

which is controlled by the generalized parameter
2

1 1 1 1

1
cos( )cos( ) sin( ) sin( )

2

a
u qT T T qT T T

q


    . (23)

The analysis shows that the temporal course of the controlling sequence can have a monotone, 
non-monotone but regular, and distinctly non-regular character depending on the generalized 
parameter value. In the last case the non-regularity has a form of chaotic behaviour that is 
visually confirmed by the Lamerey diagram, Fig. 6. There are long intervals in the sequence 

r r

rrn n

n+1
n+1

h

11

r* hhr** r*

Fig. 6. The Lamerey diagram for the controlling sequence: (left) for the generalized parameter 
2 1u  ; (right) for 2 1u  .

of the modulation periods where Nr  changes almost regularly. After this interval the relatively 

short intervals of strong irregular behaviour of Nr  take place. Larger deviations of 2u  from 1
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lead to more irregular behaviour of Nr . This phenomenon can be termed "quasi-
intermittency".
The similar behaviour takes place for the transformed field. If 2 1u   it has the regular 
character with time as well as the sequence Nr , Fig. 7a. Otherwise, if 2 1u  , the sequence as 

well as the field have irregular behaviour, Fig 7b.
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Fig. 7. The behaviour of the transformed field with time: a) the parametric amplification, b) 
the irregular changing.

4.2. Characteristics of chaotic dynamics

4.2.1. The Hurst’s index
The presence of the quasi-intermittency can be confirmed by the Hurst’s method (Hurst, 
1965), according to which the time series of nr  is characterized by the Hurst's index H , 

which is determined as the asymptotic value of the function
~ ln( / ) / lnn nH R S n (24)

where,
11

max ( , ) min ( , )n
k nk n

R X k n X k n
  

  , and

 
1

( , )
k

i n
i

X k n r r


    ,  2

1 1

1 1
,

n n

n i n i n
i i

r r S r r
n n 

        . (25)

For the white noise (a completely uncorrelated signal) this index equals to 0.5H  . The value 
0.5 ( 0.5)H H   is associated with the long-range correlation when the time series 

exhibits persistence (antipersistence). 
The chaotic character of Nr  is demonstrated by the calculation of the Hurst’s index. It can be

seen from Fig. 8 that the decrease of the generalized parameter leads to a situation when the 
Hurst’s index takes magnitudes corresponding to the white noise, 0.5H  .
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Fig. 8. The detailed behaviour of the Hurst's index vs the duration of the disturbance interval 
(the parameter u is given in the upper diagram).

4.2.2. The signal complexity
The Nr  behaviour can be also characterised by a complexity measure (Crutchfield et al., 
1989). This measure of complexity shows how much information is stored in the signal and 
how much information is needed to predict the next value of the signal if we know all the 
values up to some moment in time. In two limiting cases, when a signal has constant value at 
all times and when the signal is completely random, a complexity is equal to zero in this 
framework because of no information about the previous evolution needed to predict the 
signal in both cases. All intermediate cases have a finite, non-zero value of the complexity.

The algorithm of computing the finite statistical complexity (Nerukh D, 2002) follows the 
method originated in the works by Crutchfield and others and it consists of considering the 
symbolic subsequences that form the dynamical ‘states’ of the system and the time evolution, 
which is described as transitions between these states with some probabilities iP . The finite 
statistical complexity is calculated by the formula:

2logi i
i

C P P  . (26)

The dependence of this measure on the modulation period shows a correlation between the 
complexity and the generalized parameter u, Fig. 9. The electromagnetic signal is regular and 
its complexity drops to zero when the absolute value of the generalized parameter u (the dash-
dot sine-like line) becomes greater than 1. 
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Fig. 9. The behaviour of the complexity vs the modulation periods (the parameter u is shown 
by the dash-dot sine-like line).

In this case the value of the H index is typical for the regular behaviour. The complexity drops 
to zero when the Hurst's index deviates notably from the value of 0.5 (in average) that 
corresponds to regular behaviour of the signal, Fig. 8. Thus, the correlation exists between the 
Hurst's index and the complexity of the signal and it corresponds to the behaviour of these 
two characteristics and the sequence nr . Both characteristics correlate with the generalized 

parameter u. This is true for both cases when the medium becomes more, 1a  , or less, 1a  ,
optically dense on the disturbance intervals.

4.2.3. The Lyapunov exponent
The behaviour of nr can be quantified by the Lyapunov exponent. Let us derive the 
estimation of this exponent as in (Kuznetsov, 2000). For this, we consider two nearby
trajectories nr and n n nr r r    of recurrence mapping 1 ( )n nr f r  given by the formula (22). 
Using the Taylor’s series expansion of (22) one can derive

2 2( 1)
1 1 1 1/( )n n

n nr r u B u B
       (27)

where iB are some coefficients that do not depend on u .

The Lyapunov exponent is determined by the evolution of the small disturbance in linear 
approximation as

_ 1
lim ln n
n

r
n

   (28)

Substitution of nr from (27) gives, at least for 2 1u  ,
_ _

2( 1) 2 2
1 1

1 1
lim ln / lim ln / ln lnn

n n

n
r u r n u u

n n


 

       
 

  (29)

Therefore, the Lyapunov exponent is negative if 2 1u  . If one assumes that the estimation 

(29) is true for 2 1u  (which is not evident) than the Lyapunov exponent becomes positive. 
This analysis is confirmed by the direct calculation of the Lyapunov exponent by the formula 
(28), according to which its magnitudes become negative beginning from the generalized 
parameter value of 0.5u  .
Fig. 10 shows that the Lyapunov exponent becomes positive for 0.6u  . In the region 

0.6 1u   there is a set of intermittent intervals of chaotic and non-chaotic behaviour of the 
Lyapunov exponent. For 1u  the Lyapunov exponents become strictly negative.
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Fig. 10. Dependence of the Lyapunov exponent on the generalized parameter.

5. CONCLUSION

The three simplest linear physical models where the chaotic dynamics can be realized are 
investigated: three linear interacting oscillators, electromagnetic wave scattering in a double 
periodical inhomogeneous medium occupying half-space and an electromagnetic field in 
homogeneous linear dielectric medium which permittivity is modulated in time.
It is shown that these linear systems and some their characteristics can have chaotic 
behaviour. It is worth to note that these types of models are often used in the description of 
various physical processes.
One can conclude that the change of the dependent variables can transform the initially linear 
equations into nonlinear ones that can have chaotic solutions. The chaotic behaviour may 
reflect also the fact that the new variables themselves satisfy nonlinear equations.
Chaotic dynamics generated by linear systems allows to reveal unknown features of such 
systems that may be useful for their better and more complete understanding. Moreover, 
methods of statistical physics can be used for the investigation of the system characteristics in 
the regime of dynamical chaos.
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