1,435 research outputs found

    Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS

    Get PDF
    Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations

    Ground-gamma band mixing and evolution of collectivity in even-even neutron-rich nuclei with 40<Z<50

    Full text link
    We propose an extended band mixing formalism capable of describing the ground-gamma band interaction in a wide range of collective spectra beyond the regions of well deformed nuclei. On this basis we explain the staggering effects observed in the gamma bands of Mo, Ru and Pd nuclei providing a consistent interpretation of new experimental data in the neutron rich region. As a result the systematic behavior of the odd-even staggering effect and some general characteristics of the spectrum such as the mutual disposition of the bands, the interaction strength and the band structures is explained as the manifestation of respective changes in collective dynamics of the system.Comment: 17 pages, 6 figures, 4 table

    Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations

    Full text link
    We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expected for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig 14

    Properties of Light Flavour Baryons in Hypercentral quark model

    Full text link
    The light flavour baryons are studied within the quark model using the hyper central description of the three-body system. The confinement potential is assumed as hypercentral coulomb plus power potential (hCPPΜhCPP_\nu) with power index Μ\nu. The masses and magnetic moments of light flavour baryons are computed for different power index, Μ\nu starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in Μ\nu beyond the power index Μ>\nu> 1.0. Further we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with known experimental as well as other theoretical models.Comment: Accepted in Pramana J. of Physic

    Comparative Analysis of Ribonuclease P RNA of the Planctomycetes

    Get PDF
    The planctomycetes, order Planctomycetales, are a distinct phylum of domain Bacteria. Genes encoding the RNA portion of ribonuclease P (RNase P) of some planctomycete members were sequenced and compared with existing database planctomycete sequences. rnpB gene sequences encoding RNase P RNA were generated by a conserved primer PCR strategy for Planctomyces brasiliensis, Planctomyces limnophilus, Pirellula marina, Pirellula staleyi strain ATCC 35122, Isosphaera pallida, one other Isosphaera strain, Gemmata obscuriglobus and three other strains of the Gemmata group. These sequences were aligned against reference bacterial sequences and secondary structures of corresponding RNase P RNAs deduced by a comparative approach. P12 helices were found to be highly variable in length, as were helices P16.1 and P19, when present. RNase P RNA secondary structures of Gemmata isolates were found to have unusual features relative to other planctomycetes, including a long P9 helix and an insert in the P13 helix not found in any other member of domain Bacteria. These unique features are consistent with other unusual properties of this genus, distinguishing it from other bacteria. Phylogenetic analyses indicate that relationships between planctomycetes derived from RNase P RNA are consistent with 16S rRNA-based analyses

    Chiral Symmetry and the Nucleon's Vector Strangeness Form Factors

    Get PDF
    The nucleon's strange-quark vector current form factors are studied from the perspective of chiral symmetry. It is argued that chiral perturbation theory cannot yield a prediction for the strangeness radius and magnetic moment. Arrival at definite predictions requires the introduction of additional, model-dependent assumptions which go beyond the framework of chiral perturbation theory. A variety of such model predictions is surveyed, and the credibility of each is evaluated. The most plausible prediction appears in a model where the unknown chiral counterterms are identified with tt-channel vector meson exchange amplitudes. The corresponding prediction for the mean square Dirac strangeness radius is ⟹rs2⟩=0.24\langle r_s^2\rangle = 0.24 fm2^2, which would be observable in up-coming semileptonic determinations of the nucleon's strangeness form factors.Comment: LaTex 31 pages, four figures available from authors

    The coronal line regions of planetary nebulae NGC6302 and NGC6537: 3-13um grating and echelle spectroscopy

    Get PDF
    We report on advances in the study of the cores of NGC6302 and NGC6537 using infrared grating and echelle spectroscopy. In NGC6302, emission lines from species spanning a large range of ionization potential, and in particular [SiIX]3.934um, are interpreted using photoionization models (including CLOUDY), which allow us to reestimate the central star's temperature to be about 250000K. All of the detected lines are consistent with this value, except for [AlV] and [AlVI]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154eV). A similar depletion pattern is observed in NGC6537. Echelle spectroscopy of IR coronal ions in NGC6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (< 22km/s FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [NeV]3426A. We note the absence of a hot bubble, or a wind blown bipolar cavity filled with a hot plasma, at least on 1'' and 10km/s scales. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.Comment: Accepted for publication in MNRA

    Gendered performances in sport: an embodied approach

    Get PDF
    Despite significant advances in recent years, gender inequalities remain apparent within the context of sport participation and engagement. One of the problems, however, when addressing gender issues in sport is the continued assumption by many sport practitioners that the experiences of women and men will always be different because of perceived physiological characteristics. Adopting a focus based solely upon perceived gendered differences often overlooks the importance of recognising individual experience and the prevailing social influences that impact upon participation, such as age, class, race and ability. An embodied approach, as well as seeking to move beyond mind/body dualisms, incorporates the physiological with the social and psychological. Therefore, it is suggested that while considerations of gender remain important, they need to be interpreted alongside other interconnecting and influential (at varying times and occasions) social and physical factors. It is argued that taking the body as a starting point opens up more possibilities to manoeuvre through the mine field that is gender and sport participation. The appeal of an embodied approach to the study of gender and sport is in its accommodation of a wider multi-disciplinary lens. Particularly, by acknowledging the subjective, corporeal, lived experiences of sport engagement, an embodied approach offers a more flexible starting point to negotiate the theoretical and methodological challenges created by restrictive discourses of difference
    • 

    corecore