5 research outputs found

    Glycerol-Driven Denitratation: Process Kinetics, Microbial Ecology, and Operational Controls

    No full text
    Denitratation, the selective reduction of nitrate to nitrite, is a novel process and when coupled with anaerobic ammonium oxidation (anammox) could achieve resource-efficient biological nitrogen removal of ammonium- and nitrate-laden waste streams. Using a fundamentally-based, first principles approach, this study optimized a stoichiometrically-limited, glycerol-driven denitratation process and characterized mechanisms supporting nitrite accumulation with results that aligned with expectations. At the optimal influent chemical oxygen demand to nitrate ratio of 3.0 : 1 identified, glycerol supported selective nitrate reduction to nitrite (nitrite accumulation ratio, NAR = 62%) and near-complete nitrate conversion (nitrate reduction ratio, NRR = 96%), indicating its viability in a denitratation system. Specific rates of nitrate reduction (135.3 mg N per g VSS h−1) were at least one order of magnitude greater than specific rates of nitrite reduction (14.9 mg N per g VSS h−1), potentially resulting in transient nitrite accumulation and indicating glycerol\u27s superiority over other organic carbon sources in denitratation systems. Optimal stoichiometric limitation pH and ORP inflection points in nitrogen transformation assays corresponded to maximum nitrite accumulation, indicating operational setpoints to prevent further nitrite reduction. Denitratation conditions supported enrichment of Thauera sp. as the dominant genus. Stoichiometric limitation of influent organic carbon, coupled with differential nitrate and nitrite reduction kinetics, optimized operational controls, and a distinctively enriched microbial ecology was identified as causal in glycerol-driven denitratation

    A Consensus-Driven Agenda for Emergency Medicine Firearm Injury Prevention Research

    No full text
    Study objectiveTo identify critical emergency medicine-focused firearm injury research questions and develop an evidence-based research agenda.MethodsNational content experts were recruited to a technical advisory group for the American College of Emergency Physicians Research Committee. Nominal group technique was used to identify research questions by consensus. The technical advisory group decided to focus on 5 widely accepted categorizations of firearm injury. Subgroups conducted literature reviews on each topic and developed preliminary lists of emergency medicine-relevant research questions. In-person meetings and conference calls were held to iteratively refine the extensive list of research questions, following nominal group technique guidelines. Feedback from external stakeholders was reviewed and integrated.ResultsFifty-nine final emergency medicine-relevant research questions were identified, including questions that cut across all firearm injury topics and questions specific to self-directed violence (suicide and attempted suicide), intimate partner violence, peer (nonpartner) violence, mass violence, and unintentional ("accidental") injury. Some questions could be addressed through research conducted in emergency departments; others would require work in other settings.ConclusionThe technical advisory group identified key emergency medicine-relevant firearm injury research questions. Emergency medicine-specific data are limited for most of these questions. Funders and researchers should consider increasing their attention to firearm injury prevention and control, particularly to the questions identified here and in other recently developed research agendas
    corecore