10 research outputs found

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves

    Get PDF
    Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%–24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7%–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves. © 2021 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ

    Relationships between Parental Education and Overweight with Childhood Overweight and Physical Activity in 9-11 Year Old Children: Results from a 12-Country Study

    Get PDF
    Background: Globally, the high prevalence of overweight and low levels of physical activity among children has serious implications for morbidity and premature mortality in adulthood. Various parental factors are associated with childhood overweight and physical activity. The objective of this paper was to investigate relationships between parental education or overweight, and (i) child overweight, (ii) child physical activity, and (iii) explore household coexistence of overweight, in a large international sample. Methods: Data were collected from 4752 children (9-11 years) as part of the International Study of Childhood Obesity, Lifestyle and the Environment in 12 countries around the world. Physical activity of participating children was assessed by accelerometry, and body weight directly measured. Questionnaires were used to collect parents' education level, weight, and height. Results: Maternal and paternal overweight were positively associated with child overweight. Higher household coexistence of parent-child overweight was observed among overweight children compared to the total sample. There was a positive relationship between maternal education and child overweight in Colombia 1.90 (1.23-2.94) [odds ratio (confidence interval)] and Kenya 4.80 (2.21-10.43), and a negative relationship between paternal education and child overweight in Brazil 0.55 (0.33-0.92) and the USA 0.54 (0.33-0.88). Maternal education was negatively associated with children meeting physical activity guidelines in Colombia 0.53 (0.33-0.85), Kenya 0.35 (0.19-0.63), and Portugal 0.54 (0.31-0.96). Conclusions: Results are aligned with previous studies showing positive associations between parental and child overweight in all countries, and positive relationships between parental education and child overweight or negative associations between parental education and child physical activity in lower economic status countries. Relationships between maternal and paternal education and child weight status and physical activity appear to be related to the developmental stage of different countries. Given these varied relationships, it is crucial to further explore familial factors when investigating child overweight and physical activity

    Association between breakfast frequency and physical activity and sedentary time : a cross-sectional study in children from 12 countries

    Get PDF
    BackgroundExisting research has documented inconsistent findings for the associations among breakfast frequency, physical activity (PA), and sedentary time in children. The primary aim of this study was to examine the associations among breakfast frequency and objectively-measured PA and sedentary time in a sample of children from 12 countries representing a wide range of human development, economic development and inequality. The secondary aim was to examine interactions of these associations between study sites.MethodsThis multinational, cross-sectional study included 6228 children aged 9-11years from the 12 International Study of Childhood Obesity, Lifestyle and the Environment sites. Multilevel statistical models were used to examine associations between self-reported habitual breakfast frequency defined using three categories (breakfast consumed 0 to 2days/week [rare], 3 to 5days/week [occasional] or 6 to 7days/week [frequent]) or two categories (breakfast consumed less than daily or daily) and accelerometry-derived PA and sedentary time during the morning (wake time to 1200h) and afternoon (1200h to bed time) with study site included as an interaction term. Model covariates included age, sex, highest parental education, body mass index z-score, and accelerometer waking wear time.ResultsParticipants averaged 60 (s.d. 25) min/day in moderate-to-vigorous PA (MVPA), 315 (s.d. 53) min/day in light PA and 513 (s.d. 69) min/day sedentary. Controlling for covariates, breakfast frequency was not significantly associated with total daily or afternoon PA and sedentary time. For the morning, frequent breakfast consumption was associated witha higher proportion of time in MVPA (0.3%), higher proportion of time in light PA (1.0%) and lower min/day and proportion of time sedentary (3.4min/day and 1.3%) than rare breakfast consumption (all p0.05). No significant associations were found when comparing occasional with rare or frequent breakfast consumption, or daily with less than daily breakfast consumption. Very few significant interactions with study site were found.ConclusionsIn this multinational sample of children, frequent breakfast consumption was associated with higher MVPA and light PA time and lower sedentary time in the morning when compared with rare breakfast consumption, although the small magnitude of the associations may lack clinical relevance.Trial registrationThe International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) is registered at(Identifier NCT01722500).Peer reviewe

    Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE)

    No full text
    Background: We compared 24-hour waist-worn accelerometer wear time characteristics of 9-11 year old children in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) to similarly aged U.S. children providing waking-hours waist-worn accelerometer data in the 2003-2006 National Health and Nutrition Examination Survey (NHANES). Methods: Valid cases were defined as having 654 days with 6510 hours of waking wear time in a 24-hour period, including one weekend day. Previously published algorithms for extracting total sleep episode time from 24-hour accelerometer data and for identifying wear time (in both the 24-hour and waking-hours protocols) were applied. The number of valid days obtained and a ratio (percent) of valid cases to the number of participants originally wearing an accelerometer were computed for both ISCOLE and NHANES. Given the two surveys' discrepant sampling designs, wear time (minutes/day, hours/day) from U.S. ISCOLE was compared to NHANES using a meta-analytic approach. Wear time for the 11 additional countries participating in ISCOLE were graphically compared with NHANES. Results: 491 U.S. ISCOLE children (9.92\ub10.03 years of age [M\ub1SE]) and 586 NHANES children (10.43 \ub1 0.04 years of age) were deemed valid cases. The ratio of valid cases to the number of participants originally wearing an accelerometer was 76.7% in U.S. ISCOLE and 62.6% in NHANES. Wear time averaged 1357.0 \ub1 4.2 minutes per 24-hour day in ISCOLE. Waking wear time was 884.4 \ub1 2.2 minutes/day for U.S. ISCOLE children and 822.6 \ub1 4.3 minutes/day in NHANES children (difference = 61.8 minutes/day, p < 0.001). Wear time characteristics were consistently higher in all ISCOLE study sites compared to the NHANES protocol. Conclusions: A 24-hour waist-worn accelerometry protocol implemented in U.S. children produced 22.6 out of 24 hours of possible wear time, and 61.8 more minutes/day of waking wear time than a similarly implemented and processed waking wear time waist-worn accelerometry protocol. Consistent results were obtained internationally. The 24-hour protocol may produce an important increase in wear time compliance that also provides an opportunity to study the total sleep episode time separate and distinct from physical activity and sedentary time detected during waking-hours

    A model for presenting accelerometer paradata in large studies: ISCOLE

    No full text
    Background: We present a model for reporting accelerometer paradata (process-related data produced from survey administration) collected in the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE), a multi-national investigation of >7000 children (averaging 10.5 years of age) sampled from 12 different developed and developing countries and five continents. Methods: ISCOLE employed a 24-hr waist worn 7-day protocol using the ActiGraph GT3X+. Checklists, flow charts, and systematic data queries documented accelerometer paradata from enrollment to data collection and treatment. Paradata included counts of consented and eligible participants, accelerometers distributed for initial and additional monitoring (site specific decisions in the face of initial monitoring failure), inadequate data (e.g., lost/malfunction, insufficient wear time), and averages for waking wear time, valid days of data, participants with valid data (>4 valid days of data, including 1 weekend day), and minutes with implausibly high values (>20,000 activity counts/min). Results: Of 7806 consented participants, 7372 were deemed eligible to participate, 7314 accelerometers were distributed for initial monitoring and another 106 for additional monitoring. 414 accelerometer data files were inadequate (primarily due to insufficient wear time). Only 29 accelerometers were lost during the implementation of ISCOLE worldwide. The final locked data file consisted of 6553 participant files (90.0% relative to number of participants who completed monitoring) with valid waking wear time, averaging 6.5 valid days and 888.4 minutes/day (14.8 hours). We documented 4762 minutes with implausibly high activity count values from 695 unique participants (9.4% of eligible participants and <0.01% of all minutes). Conclusions: Detailed accelerometer paradata is useful for standardizing communication, facilitating study management, improving the representative qualities of surveys, tracking study endpoint attainment, comparing studies, and ultimately anticipating and controlling costs

    Relationships Between Outdoor Time, Physical Activity, Sedentary Time, and Body Mass Index in Children: A 12-Country Study

    No full text
    Purpose: This study investigated the relationship between outdoor time and physical activity (PA), sedentary time (SED), and body mass index z scores among children from 12 lower-middle-income, upper-middle-income, and high-income countries.Methods: In total, 6478 children (54.4% girls) aged 9-11 years participated. Outdoor time was self-reported, PA and SED were assessed with ActiGraph GT3X+ accelerometers, and height and weight were measured. Data on parental education, neighborhood collective efficacy, and accessibility to neighborhood recreation facilities were collected from parent questionnaires. Country latitude and climate statistics were collected through national weather data sources. Gender-stratified multilevel models with parental education, climate, and neighborhood variables as covariates were used to examine the relationship between outdoor time, accelerometry measures, and body mass index z scores. Results: Each additional hour per day spent outdoors was associated with higher moderate- to vigorous-intensity PA (boys: +2.8 min/d; girls: +1.4 min/d), higher light-intensity PA (boys: +2.0 min/d; girls: +2.3 min/d), and lower SED (boys: -6.3 min/d; girls: -5.1 min/d). Effect sizes were generally weaker in lower-middle-income countries. Outdoor time was not associated with body mass index z scores. Conclusions: Outdoor time was associated with higher PA and lower SED independent of climate, parental education, and neighborhood variables, but effect sizes were small. However, more research is needed in low- and middle-income countries

    A model for presenting accelerometer paradata in large studies: ISCOLE

    Full text link
    Background: We present a model for reporting accelerometer paradata (process-related data produced from survey administration) collected in the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE), a multi-national investigation of >7000 children (averaging 10.5 years of age) sampled from 12 different developed and developing countries and five continents. Methods: ISCOLE employed a 24-hr waist worn 7-day protocol using the ActiGraph GT3X+. Checklists, flow charts, and systematic data queries documented accelerometer paradata from enrollment to data collection and treatment. Paradata included counts of consented and eligible participants, accelerometers distributed for initial and additional monitoring (site specific decisions in the face of initial monitoring failure), inadequate data (e.g., lost/malfunction, insufficient wear time), and averages for waking wear time, valid days of data, participants with valid data (>4 valid days of data, including 1 weekend day), and minutes with implausibly high values (>20,000 activity counts/min). Results: Of 7806 consented participants, 7372 were deemed eligible to participate, 7314 accelerometers were distributed for initial monitoring and another 106 for additional monitoring. 414 accelerometer data files were inadequate (primarily due to insufficient wear time). Only 29 accelerometers were lost during the implementation of ISCOLE worldwide. The final locked data file consisted of 6553 participant files (90.0% relative to number of participants who completed monitoring) with valid waking wear time, averaging 6.5 valid days and 888.4 minutes/day (14.8 hours). We documented 4762 minutes with implausibly high activity count values from 695 unique participants (9.4% of eligible participants and <0.01% of all minutes). Conclusions: Detailed accelerometer paradata is useful for standardizing communication, facilitating study management, improving the representative qualities of surveys, tracking study endpoint attainment, comparing studies, and ultimately anticipating and controlling costs

    Predictors of Change in Physical Function in Older Adults in Response to Long-Term, Structured Physical Activity: The LIFE Study

    No full text
    corecore