11 research outputs found

    OPTIMIZACIÓN DE DISEÑO DE GRANJAS AVÍCOLAS DE POLLOS

    Full text link
    Tesis por compendio[EN] Intensive (broiler) poultry farming is a strategic sector for the economy and development of many countries and regions, including Spain and the Valencian Community region. Intensive production consists of keeping the animals in specific buildings (broiler buildings) under a controlled indoor microclimate. Two main options are found regarding the ventilation systems: production in broiler buildings with natural ventilation and production in broiler buildings with mechanical ventilation (commonly with negative depression by exhaust fans). Inadequate design is the main cause of thermal stress and the mortality of broilers. In this sense, one solution to decrease the broilers' heat stress and mortality consists of assisting in their biological thermoregulation by increasing the air velocity over them. In this PhD dissertation, the ventilation (ranges of the air velocity and its distribution, mainly at the level and plane where the broilers are located) in the main mechanical ventilation systems installed in the broiler buildings is characterised and analysed. Despite the magnitude of the current difficulties (broilers' thermal stress and mortality) and society's sensitivity regarding aspects of animal welfare, to date, the different mechanical ventilation systems in the different types of broiler building have not been characterised and analysed with scientific scrupulousness. In this PhD dissertation, the three most relevant types have been studied: cross, tunnel and single-sided. The methodological approach has been very similar in all the cases of study: some measurements by means a multi-sensor system (with our own original design and building) has been used for isotemporal recordings, the corresponding Computational Fluid Dynamics (CFD) simulations have been carried out and finally these simulations have been validated. These validations were carried out by means of two statistical techniques: by means of linear regression techniques and by means of a study of the significance (in an analysis of the variance) for the method used (sensors or CFD) in each different proposed validation model. Having validated these CFD results, CFD techniques can safely be used to characterise and analyse the ventilation in all the indoor space of the broiler buildings (sensors only allow it to be characterised in their physical locations). The first case studied involves a broiler building which has a cross mechanical ventilation system (commonplace in Mediterranean climates) installed. The conclusions from this study show that this ventilation system is adequate for broiler rearing during nearly the whole year in mild climatic locations (e.g. Mediterranean climate). However, on certain days or in periods of heat (summer), it would not be adequate because it cannot reach high enough air velocity values to reduce the heat stress on the broilers. The second case studied is a broiler building with tunnel mechanical ventilation installed. The conclusions from this study show that it is less suitable than the first one analysed (cross mechanical ventilation) for broiler rearing over nearly the whole year in mild climatic locations. However, on certain days or in periods of heat (summer), it is very suitable because it can reach higher air velocity values to reduce the heat stress on the broilers. The third case studied is a broiler building with single-sided mechanical ventilation installed. The conclusions from this study show that this ventilation system is suitable for broiler rearing almost throughout the year in mild climatic locations. However, on certain days or in periods of heat (summer), it would be not adequate because it cannot reach high enough air velocity values to reduce the heat stress.[ES] La avicultura intensiva del pollo de carne (broiler) es un sector estratégico en la economía y desarrollo de muchos países y regiones, entre ellos España y la Comunidad Valenciana. La producción intensiva del broiler se da confinando al animal en edificios específicos (granjas de pollos) bajo un microclima interno controlado. Tiene dos variantes fundamentales en función de su sistema de ventilación: producción en granjas con ventilación natural y producción en granjas con ventilación mecánica (generalmente por depresión negativa mediante ventiladores de extracción). Un inadecuado diseño de la ventilación es la causa principal del estrés térmico y de la mortalidad de los pollos. En este sentido, una solución para disminuir el estrés térmico por calor y la mortalidad de los pollos es ayudar en su termorregulación biológica mediante un aumento de la velocidad del aire sobre ellos. En esta tesis doctoral, se ha caracterizado y analizado la ventilación (rangos de velocidad del aire y su distribución, especialmente al nivel de presencia del pollo) en los principales sistemas de ventilación mecánicos instalados en las granjas de pollos. Pese a la envergadura de la actual problemática (estrés térmico y mortalidad de los pollos) y la sensibilidad de la sociedad hacia los aspectos del bienestar animal, hasta la fecha no se han caracterizado y analizado con rigurosidad científica los diferentes sistemas de ventilación mecánicos en las diferentes tipologías de granjas de pollos. En esta tesis doctoral se han estudiado los tres más relevantes: cruzado, túnel y de pared única. El enfoque metodológico en todos los casos de estudio ha sido muy similar: se han realizado unas mediciones mediante un sistema multisensor de registro isotemporal (de diseño y fabricación propios), se han realizado las correspondientes simulaciones Computational Fluid Dynamics (CFD) y finalmente se han validado estas simulaciones. Estas validaciones se han llevado a cabo mediante dos técnicas estadísticas: mediante técnicas de regresión lineal y mediante el estudio de la significatividad (en un análisis de la varianza) de la metodología utilizada (sensores o CFD) en sendos modelos de validación propuestos. Una vez validadas estas simulaciones CFD, se tiene la seguridad de poder utilizarlas para caracterizar y analizar la ventilación en todo el espacio interior de las granjas (los sensores sólo permiten caracterizarla en las localizaciones físicas de los mismos). El primer caso de estudio es el de una granja que tiene instalado un sistema de ventilación mecánico cruzado (habitual en el clima Mediterráneo). Las conclusiones de este estudio demuestran que este sistema de ventilación es adecuado para la crianza del pollo para casi todo el año en localizaciones climáticas templadas (por ejemplo, el clima Mediterráneo). Sin embargo, en días o periodos de calor (verano), no será adecuado porque no se pueden alcanzar valores de velocidad del aire grandes que permiten disminuir el estrés por calor de los pollos. El segundo caso de estudio es el de una granja que instala el sistema de ventilación mecánico túnel. Las conclusiones de este estudio demuestran que es menos apropiado que el anterior (sistema de ventilación mecánico cruzado) para la crianza del pollo durante todo el año en localizaciones climáticas templadas. Sin embargo, en días o periodos de calor (verano), será muy adecuado porque se pueden alcanzar valores de velocidad del aire grandes que permiten disminuir el estrés por calor de los pollos. El tercer caso de estudio es el de una granja que instala el sistema de ventilación mecánico de pared única. Las conclusiones de este estudio demuestran que este sistema de ventilación es adecuado para la crianza del pollo para casi todo el año en localizaciones climáticas templadas. Sin embargo, en días o periodos de calor (verano), no será adecuado porque no se pueden alcanzar valores de ve[CA] L'avicultura intensiva del pollastre de carn (broiler) és un sector estratègic en l'economia i desenvolupament de molts països i regions, entre ells Espanya i la Comunitat Valenciana. La producció intensiva del broiler es dóna confinant a l'animal en edificis específics (granges de pollastres) sota un microclima intern controlat. Té dues variants fonamentals en funció del seu sistema de ventilació: producció en granges amb ventilació natural i producció en granges amb ventilació mecànica (generalment per depressió negativa mitjançant ventiladors d'extracció). Un inadequat disseny de la ventilació és la causa principal de l'estrés tèrmic i de la mortalitat dels pollastres. En aquest sentit, una solució per disminuir l'estrés tèrmic per calor i la mortalitat dels pollastres és ajudar en la seua termoregulació biològica mitjançant un augment de la velocitat damunt d'ells. En aquesta tesi doctoral, s'ha caracteritzat i analitzat la ventilació (rangs de velocitat de l'aire i la seua distribució, especialment al nivell de presència del pollastre) en els principals sistemes de ventilació mecànics instal·lats a les granges de pollastres. Malgrat l'envergadura de l'actual problemàtica (estrés tèrmic i mortalitat dels pollastres) i la sensibilitat de la societat envers els aspectes del benestar animal, fins aquesta data no s'han caracteritzat i analitzat amb rigor científic els diferents sistemes de ventilació mecànics a les diferents tipologies de granges de pollastres. En aquesta tesi doctoral han sigut estudiats els tres més rellevants: creuat, túnel i de paret única. L'enfocament metodològic en tots els casos d'estudi ha sigut molt similar: han sigut realitzats uns mesuraments mitjançat us sistema multisensor de registre isotemporal (de disseny i fabricació propis), han sigut realitzades les corresponents simulacions Computational Fluid Dynamics (CFD) i finalment han sigut validades aquestes simulacions. Aquestes validacions s'han dut a terme mitjançant dues tècniques estadístiques: mitjançant tècniques de regressió lineal i mitjançant l'estudi de la significativitat (en una anàlisi de la variància) de la metodologia utilitzada (sensors o CFD) en sengles models de validació proposats. Una vegada validades aquestes simulacions CFD, es té la seguretat de poder utilitzar-les per a caracteritzar i analitzar la ventilació en tot l'espai interior de les granges (els sensors només permeten caracteritzar-la en les localitzacions físiques dels mateixos). El primer cas d'estudi és el d'una granja que té instal·lat un sistema de ventilació mecànic creuat (habitual en el clima Mediterrani). Les conclusions d'aquest estudi demostren que aquest sistema és adequat per a la criança del pollastre durant quasi tot l'any en localitzacions climàtiques moderades (per exemple, el clima Mediterrani). Tanmateix, en dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir valors de velocitat de l'aire grans que permeten disminuir l'estrés per calor dels pollastres. El segon cas d'estudi és el d'una granja que instal·la el sistema de ventilació mecànic túnel. Les conclusions d'aquest estudi demostren que és menys adequat que l'anterior (sistema de ventilació mecànic creuat) per a la criança del pollastre durant tot l'any en localitzacions climàtiques moderades. Tanmateix, en dies o períodes de calor (estiu), serà molt adequat perquè es poden obtenir valors de velocitat de l'aire grans que permeten disminuir l'estrés per calor dels pollastres. El tercer cas d'estudi és el d'una granja que instal·la el sistema de ventilació mecànic de paret única. Les conclusions d'aquest estudi demostren que aquest sistema és adequat per a la criança del pollastre durant quasi tot l'any en localitzacions climàtiques moderades. Tanmateix, en dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir valors de velocitat de l'aire grans que permeBustamante García, E. (2015). OPTIMIZACIÓN DE DISEÑO DE GRANJAS AVÍCOLAS DE POLLOS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59450TESISCompendi

    Evaluating E-Learning systems success to understand student’s performance during Covid Pandemic

    Full text link
    [EN] The present work arises as a consequence of the current situation that is being experienced worldwide due to the COVID 19 and the associated repercussions on education. E- Learning has demonstrated to be the only resource capable of replacing traditional in-person learning methods in the present global gridlock due to the COVID-19 pandemic. Academic institutions around the world have heavily invested in E-Learning and it is necessary to ensure the success of E-Learning initiatives in order to make a learning model with the same guarantees of traditional models. The objective of this study is to propose and validate a model to measure the E-learning success based on different dimensions and it is an extended of the Technology Acceptance Model (TAM) and Information Systems Success (ISS), which has been empirically tested. For this purpose, an e-learning questionnaire was used in order to test academical performance with students from secondary education in València during the pandemic. Results show a significant relationship between Intention To Use for Sustainability and Students Satisfacction, a significant relationship between Students Satisfacction and Student Performance and finally a significant relationship between Student Performance and Learning Achievements.Bustamante García, E.; Martínez Gómez, M.; Berna Escriche, C. (2022). Evaluating E-Learning systems success to understand student’s performance during Covid Pandemic. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 286-286. http://hdl.handle.net/10251/18970228628

    MODELIZACIÓN MEDIANTE CFD DE PARA EVALUAR LA VENTILACIÓN EN UN EDIFICIO ARQUEOLÓGICO, DATOS PRELIMINARES.

    Full text link
    [EN] The present study addresses the influences of wind flow structure, as an important factor responsible of material damage (erosion contributing) on “Casa di Diana” Mithraeum, a roman building (130 A.D.) sited on Ostia Antica (archaeological site, Rome – Italy), through the Computational Fluid Dynamics (CFD) simulations and direct measurements for its verification and validation (V&V). In this preliminary work, we present results relating to 3D reconstruction (geometry of the entire building) and the mesh importing on Fluent software. In general, the data check confirms, with ±10%, a good agreement (model) between the numerical solutions and direct measurements data by portable sensor. For this, the model proposed could be applied on similar cases, buildings characterised by different “boundary conditions”, to predict without direct measurements, the air movement in these ventilated spaces.[ES] El presente estudio aborda la influencia de la acción del viento en la estructura puesto que dicha acción es un factor relevante y responsable del daño material (contribuye en la erosión) del mítreo de la “Casa de Diana”, un edificio romano (130 A.C.) situado en Ostia Antica (sitio arqueológico, Roma, Italia), mediante las simulaciones de la dinámica de fluidos computacional y las mediciones de campo para su verificación y validación (V&V). En este trabajo preliminar, se presentan los resultados de un reconstrucción 3D (geometría del edificio entero) y del mallado importado al software Fluent. En general, la inspección de los datos confirma, con ±10%, un buen ajuste (modelo) de las soluciones numéricas y de las mediciones de campo adquiridas mediante un sensor portátil. Para ello, el modelo propuesto puede ser aplicado en casos similares, edificios caracterizados por diferentes condiciones de contorno, para predecir sin las mediciones de campo el movimiento del aire en estos espacios ventilados.García Diego, FJ.; Scatigno, C.; Merello, P.; Bustamante, E. (2016). PRELIMINARY DATA OF CFD MODELING TO ASSESS THE VENTILATION IN AN ARCHAEOLOGICAL BUILDING. En 8th International congress on archaeology, computer graphics, cultural heritage and innovation. Editorial Universitat Politècnica de València. 504-507. https://doi.org/10.4995/arqueologica8.2016.4191OCS50450

    Digitalization of the Logistics Process in Short Food Supply Chains.:An online Viable System Model application during the COVID-19 pandemic

    Get PDF
    This paper reports an ongoing exercise concerning the design of a logistics App to support operations within Farmers’ Markets in Mexico. This exercise is part of a wider research agenda focused on ‘Supporting Alternative Food Networks’ (SAFeNET). This is a research agenda to conceive, build, implement, and develop better-informing decision-making processes that support effective and efficient AFNs (also known as Short Food Supply Chains) logistics operations in a digital environment, through smooth flows of goods and information among producers, AFNs coordinators, and consumers. This view calls for taking a systemic approach to help collectives of people to improve their autonomy and viability. Initial plans were to conduct this collaborative design exercise, using the Viable System Model (VSM) as a conversational tool. Accordingly, a series of face-to-face interviews and a focus group were planned. However, the lockdown due to COVID-19 forced researchers to abandon the face-to-face option and conduct the primary data collection online. The VSM intervention had to be adapted for its use on an online platform, in such a way that the platform would support knowledge building interactively, with a series of participants. This paper describes the format and visual appearance of the online VSM framework, its application, and the lessons learned through this exercise. Two points deserve to be highlighted: First, although the exercise outcome was very valuable for the next stage of the design, the participants’ capacity for collective and individual reflection during the workshop was limited. Second, participants continued adding comments via the adopted online visual collaboration platform after the workshop ended, showing an understanding of the process and commitment beyond the researchers’ expectations. The outcomes from this experiment are promissory, suggesting that online Systems Thinking interventions deserve further development

    Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House

    Full text link
    A building needs to be designed for the whole period of its useful life according to its requirements. However, future climate predictions involve some uncertainty. Thus, several sustainable strategies of adaptation need to be incorporated after the initial design. In this sense, tunnel ventilation in broiler houses provides high air velocity values (2-3 m center dot s(-1)) at animal level to diminish their thermal stress and associated mortality. This ventilation system was experimentally incorporated into a Mediterranean climate. The aim was to resolve these thermal problems in hot seasons, as (traditional) cross-mechanical ventilation does not provide enough air velocity values. Surprisingly, very little information on tunnel ventilation systems is available, especially in terms of air velocity. Using Computational Fluid Dynamics (CFD) and a multi-sensor system, the average results are similar (at animal level: 1.59 +/- 0.68 m center dot s(-1) for CFD and 1.55 +/- 0.66 m center dot s(-1) for measurements). The ANOVA for validation concluded that the use of CFD or measurements is not significant (p-value = 0.1155). Nevertheless, some problems with air velocity distribution were found and need to be solved. To this end, CFD techniques can help by means of virtual designs and scenarios providing information for the whole indoor space.This work was funded by the project GV04B-511 (Generalitat Valenciana, Spain) and by the Vicerrectorado of Investigacion of the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo Multidisciplinar Project PAID register 2614).Bustamante García, E.; García Diego, FJ.; Calvet Sanz, S.; Torres Salvador, AG.; Hospitaler Pérez, A. (2015). Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House. Sustainability. 7(2):2066-2085. https://doi.org/10.3390/su7022066S2066208572Holmes, M. J., & Hacker, J. N. (2007). Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy and Buildings, 39(7), 802-814. doi:10.1016/j.enbuild.2007.02.009Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. doi:10.1016/j.livsci.2010.02.011Derek, T., & Clements-Croome, J. (1997). What do we mean by intelligent buildings? Automation in Construction, 6(5-6), 395-400. doi:10.1016/s0926-5805(97)00018-6Bustamante, E., Guijarro, E., García-Diego, F.-J., Balasch, S., Hospitaler, A., & Torres, A. G. (2012). Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors, 12(5), 5752-5774. doi:10.3390/s120505752Bustamante, E., García-Diego, F.-J., Calvet, S., Estellés, F., Beltrán, P., Hospitaler, A., & Torres, A. (2013). Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. Energies, 6(5), 2605-2623. doi:10.3390/en6052605Stamp Dawkins, M., Donnelly, C. A., & Jones, T. A. (2004). Chicken welfare is influenced more by housing conditions than by stocking density. Nature, 427(6972), 342-344. doi:10.1038/nature02226Medio Millón de Pollos Mueren por el Fuerte Calor de los Últimos Días http://elpais.com/diario/2003/06/17/cvalenciana/1055877480_850215.htmlKorea Heat Wave Kills Off 830,000 Chickens (in August 2012) http://www.worldpoultry.net/Broilers/Health/2012/8/S-Korean-heat-wave-kills-off-830000-chickens-WP010736W/Blanes-Vidal, V., Guijarro, E., Balasch, S., & Torres, A. G. (2008). Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosystems Engineering, 100(1), 105-116. doi:10.1016/j.biosystemseng.2008.02.004Mitchell, M. A., & Kettlewell, P. J. (1998). Physiological stress and welfare of broiler chickens in transit: solutions not problems! Poultry Science, 77(12), 1803-1814. doi:10.1093/ps/77.12.1803Sohail, M. U., Hume, M. E., Byrd, J. A., Nisbet, D. J., Ijaz, A., Sohail, A., … Rehman, H. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 91(9), 2235-2240. doi:10.3382/ps.2012-02182Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386-2414. doi:10.1016/j.biortech.2006.11.025Bartzanas, T., Kittas, C., Sapounas, A. A., & Nikita-Martzopoulou, C. (2007). Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models. Biosystems Engineering, 97(2), 229-239. doi:10.1016/j.biosystemseng.2007.02.009Harral, B. B., & Boon, C. R. (1997). Comparison of Predicted and Measured Air Flow Patterns in a Mechanically Ventilated Livestock Building without Animals. Journal of Agricultural Engineering Research, 66(3), 221-228. doi:10.1006/jaer.1996.0140S. R. Pawar, J. M. Cimbala, E. F. Wheeler, & D. V. Lindberg. (2007). Analysis of Poultry House Ventilation Using Computational Fluid Dynamics. Transactions of the ASABE, 50(4), 1373-1382. doi:10.13031/2013.23626LEE, I.-B., SASE, S., & SUNG, S.-H. (2007). Evaluation of CFD Accuracy for the Ventilation Study of a Naturally Ventilated Broiler House. Japan Agricultural Research Quarterly: JARQ, 41(1), 53-64. doi:10.6090/jarq.41.53Mostafa, E., Lee, I.-B., Song, S.-H., Kwon, K.-S., Seo, I.-H., Hong, S.-W., … Han, H.-T. (2012). Computational fluid dynamics simulation of air temperature distribution inside broiler building fitted with duct ventilation system. Biosystems Engineering, 112(4), 293-303. doi:10.1016/j.biosystemseng.2012.05.001R. E. Lacey, J. S. Redwine, C. B. Parnell, & Jr. (2003). PARTICULATE MATTER AND AMMONIA EMISSION FACTORS FOR TUNNEL VENTILATED BROILER PRODUCTION HOUSES IN THE SOUTHERN U.S. Transactions of the ASAE, 46(4). doi:10.13031/2013.13958Blanes-Vidal, V., Guijarro, E., Nadimi, E. S., & Torres, A. G. (2010). Development and field test of an on-line computerized instrumentation system for air velocity, temperature and differential pressure measurements in poultry houses. Spanish Journal of Agricultural Research, 8(3), 570. doi:10.5424/sjar/2010083-1252Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2Bjerg, B., Svidt, K., Zhang, G., Morsing, S., & Johnsen, J. O. (2002). Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture, 34(1-3), 223-235. doi:10.1016/s0168-1699(01)00189-2Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006Homepage http://www.testo.comHeber, A. J., Boon, C. R., & Peugh, M. W. (1996). Air Patterns and Turbulence in an Experimental Livestock Building. Journal of Agricultural Engineering Research, 64(3), 209-226. doi:10.1006/jaer.1996.0062Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 38(3), 209-272. doi:10.1016/s0376-0421(02)00005-2Omega Engineering, Inc. http://www.omega.com/Temperature/pdf/TFD_RTD.pdfSensortechnics Inc. http://www.sensortechnics.comPosner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35(5), 515-526. doi:10.1016/s0378-7788(02)00163-9Lott, B. D., Simmons, J. D., & May, J. D. (1998). Air velocity and high temperature effects on broiler performance. Poultry Science, 77(3), 391-393. doi:10.1093/ps/77.3.391Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., & Robinson, F. E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 93(12), 2970-2982. doi:10.3382/ps.2014-0429

    Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm

    Get PDF
    © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).[EN] Broiler production in modern poultry farms commonly uses mechanical ventilation systems. This mechanical ventilation requires an amount of electric energy and a high level of investment in technology. Nevertheless, broiler production is affected by periodic problems of mortality because of thermal stress, thus being crucial to explore the ventilation efficiency. In this article, we analyze a cross-mechanical ventilation system focusing on air velocity distribution. In this way, two methodologies were used to explore indoor environment in livestock buildings: Computational Fluid Dynamics (CFD) simulations and direct measurements for verification and validation (V&V) of CFD. In this study, a validation model using a Generalized Linear Model (GLM) was conducted to compare these methodologies. The results showed that both methodologies were similar in results: the average of air velocities values were 0.60 ± 0.56 m s−1 for CFD and 0.64 ± 0.54 m s−1 for direct measurements. In conclusion, the air velocity was not affected by the methodology (CFD or direct measurements), and the CFD simulations were therefore validated to analyze indoor environment of poultry farms and its operations. A better knowledge of the indoor environment may contribute to reduce the demand of electric energy, increasing benefits and improving the thermal comfort of broilersThis work was funded by the project GV04B-511 (Generalitat Valenciana, Spain) and by the Vicerrectorado of Investigacion of the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo Multidisciplinar Project PAID register 2614).Bustamante García, E.; García Diego, FJ.; Calvet Sanz, S.; Estellés, F.; Beltrán Medina, P.; Hospitaler Pérez, A.; Torres Salvador, AG. (2013). Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. Energies. 6(5):2605-2623. https://doi.org/10.3390/en6052605S260526236

    Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms

    Full text link
    The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms.This work was funded by the project GV04B-511 (Generalitat Valenciana, Spain). The authors would like to thank Victoria Blanes-Vidal of the Southern Denmark University, for her helpful comments and suggestions. We are also grateful for the comments and assistance provided by anonymous referees of earlier versions of this paper.Bustamante García, E.; Guijarro Estelles, ED.; García Diego, FJ.; Balasch Parisi, S.; Hospitaler Pérez, A.; Torres Martínez, AJ. (2012). Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors. 12(5):5752-5774. doi:10.3390/s120505752S5752577412

    La ganadería ante escenarios complejos.

    Get PDF
    La calidad de las contribuciones, producto de la pluma de especialistas en los temas tratados, el presente es un libro que esperamos, basándonos en la importancia de los temas tratados, sea de utilidad y abone a la reflexión de los estudiosos de la ganadería mexicana y, por supuesto, en beneficio de las familias ganaderas y de los consumidores de sus productos.este libro refleja en muchos sentidos la situación de la ganadería mexicana, a la que se le están demandando mayor producción y productividad, que los procesos productivos tengan la menor huella ecológicposible, que los alimentos sean inocuos, que se abatan costos de producción y, cada vez aumentan las presiones de diversos grupos para, que se incluyan los protocolos de bienestar animal, solamente por citar algunos de los retos que tiene. Algunas de estas demandas son complementarias, otras se contraponen, lo que hace valiosos a los estudios que desde las ciencias sociales se realizan y, desde diversas ópticas, se hagan propuestas de política pública balanceadas que consideren lo mejor de cada enfoque, pero sin desechar por completo los antagónicos.Universidad Autónoma Chaping

    Warming and environmental control in poultry

    Full text link
    Estellés Barber, F.; Bustamante García, E.; Calvet Sanz, S. (2013). Climatización y control ambiental en avicultura. Albéitar. 165:10-11. http://hdl.handle.net/10251/78231S101116
    corecore