187 research outputs found

    Pre-COVID-19 Social Determinants of Health Among Mexican Migrants in Los Angeles and New York City and Their Increased Vulnerability to Unfavorable Health Outcomes During the COVID-19 Pandemic

    Get PDF
    COVID-19 has disproportionally affected underrepresented minorities (URM) and low-income immigrants in the United States. The aim of the study is to examine the underlying vulnerabilities of Mexican immigrants in New York City (NYC) and Los Angeles (LA), its correspondence with area-level COVID-19 morbidity and mortality, and to document the role of trusted and culturally sensitive services offered during the pandemic through the Ventanillas de Salud (i.e. VDS, Health Windows) program. The study uses a mixed-methods approach including a cross-sectional survey of Mexican immigrants in LA and NYC collected in the Mexican Consulates at the onset of the pandemic, complemented with a georeferencing analysis and key informant interviews. Data suggested an increased vulnerability to COVID-19 given participants reported health status, health care profile and place of residence, which coincided with the georeferencing analysis. The key informant interviews confirmed the vulnerability of this population and the supporting role of VDS in helping immigrants navigate health systems and disseminate health information. Mexican immigrants had an increased vulnerability to COVID-19 at the individual, geographic and systemic levels. Trusted and culturally sensitive services are needed to overcome some of the barriers and risk factors that increase the vulnerability of URM and immigrant populations to COVID-19

    Comparing the Income Elasticity of Health Spending in Middle-Income and High-Income Countries: The Role of Financial Protection

    Get PDF
    Abstract Background: As middle-income countries become more affluent, economically sophisticated and productive, health expenditure patterns are likely to change. Other socio-demographic and political changes that accompany rapid economic growth are also likely to influence health spending and financial protection. Methods: This study investigates the relationship between growth on per-capita healthcare expenditure and gross domestic product (GDP) in a group of 27 large middle-income economies and compares findings with those of 24 high-income economies from the Organization for Economic Cooperation and Development (OECD) group. This comparison uses national accounts data from 1995-2014. We hypothesize that the aggregated income elasticity of health expenditure in middle-income countries would be less than one (meaning healthcare is a normal good). An initial exploratory analysis tests between fixed-effects and random-effects model specifications. A fixed-effects model with time-fixed effects is implemented to assess the relationship between the two measures. Unit root, Hausman and serial correlation tests are conducted to determine model fit. Additional explanatory variables are introduced in different model specifications to test the robustness of our regression results. We include the out-of-pocket (OOP) share of health spending in each model to study the potential role of financial protection in our sample of high- and middle-income countries. The first-difference of study variables is implemented to address non-stationarity and cointegration properties. Results: The elasticity of per-capita health expenditure and GDP growth is positive and statistically significant among sampled middle-income countries (51 per unit-growth in GDP) and high-income countries (50 per unit-growth in GDP). In contrast with previous research that has found that income elasticity of health spending in middle-income countries is larger than in high-income countries, our findings show that elasticity estimates can change if different criteria are used to assemble a more homogenous group of middle-income countries. Financial protection differences between middle- and high-income countries, however, are not associated with their respective income elasticity of health spending. ` Conclusion: The study findings show that in spite of the rapid economic growth experienced by the sampled middleincome countries, the aggregated income elasticity of health expenditure in them is less than one, and equals that of high-income countries

    Migration as a determinant of childhood obesity in the United States and Latin America

    Get PDF
    International migration has economic and health implications. The acculturation process to the host country may be linked to childhood obesity. We use the Community Energy Balance (CEB) framework to analyze the relationship between migration and childhood obesity in Mexican households with international migrants. Using longitudinal data from the Mexican Family Life Survey (MxFLS), we examine how migrant networks affect childhood obesity in origin communities. We also review binational health programs that could be effective at tackling childhood obesity in migrant households from Mexico. Children embedded in migrant networks are at greater risk of developing overweight or obesity, suggesting a significant relationship between childhood obesity and international migration in Mexican households. Based on our search criteria, our analysis of health outreach programs shows that Ventanillas de Salud (VDS)/Health Windows has great promise to prevent childhood obesity in a culturally sensitive and trustful environment. The CEB framework is useful to understand how migration contributes to the risk of childhood overweight and obesity in migrant households. VDS is a feasible and replicable strategy with great potential to address childhood obesity among migrant families accounting for the dynamic and binational determinants of childhood obesity

    First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way

    Get PDF
    We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 \ub1 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 7 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50\ub0), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Selective Dynamical Imaging of Interferometric Data

    Get PDF
    Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
    corecore