38 research outputs found

    Proteinase-activated receptor 2 is involved in the behavioural changes associated with sickness behaviour

    Get PDF
    Proteinase-activated receptor-2 (PAR2) is widely expressed in the CNS but whether it plays a key role in inflammation-related behavioural changes remains unknown. Hence, in the present study we have examined whether PAR2 contributes to behaviour associated with systemic inflammation using PAR2 transgenic mice. The onset of sickness behaviour was delayed and the recovery accelerated in PAR2-/- mice in the LPS-induced model of sickness behaviour. In contrast, PAR2 does not contribute to behaviour under normal conditions. In conclusion, these data suggest that PAR2 does not contribute to behaviour in the normal healthy brain but it plays a role in inflammation-related behavioural changes

    The C-terminal domain of zDHHC2 contains distinct sorting signals that regulate intracellular localisation in neurons and neuroendocrine cells

    Get PDF
    The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals

    Interleukin-16 inhibits sodium channel function and GluA1 phosphorylation via CD4- and CD9-independent mechanisms to reduce hippocampal neuronal excitability and synaptic activity

    Get PDF
    Interleukin 16 (IL-16) is a cytokine that is primarily associated with CD4+ T cell function, but also exists as a multi-domain PDZ protein expressed within cerebellar and hippocampal neurons. We have previously shown that lymphocyte-derived IL-16 is neuroprotective against excitotoxicity, but evidence of how it affects neuronal function is limited. Here, we have investigated whether IL-16 modulates neuronal excitability and synaptic activity in mouse primary hippocampal cultures. Application of recombinant IL-16 impairs both glutamate-induced increases in intracellular Ca2+ and sEPSC frequency and amplitude in a CD4- and CD9-independent manner. We examined the mechanisms underlying these effects, with rIL-16 reducing GluA1 S831 phosphorylation and inhibiting Na+ channel function. Taken together, these data suggest that IL-16 reduces neuronal excitability and synaptic activity via multiple mechanisms and adds further evidence that alternative receptors may exist for IL-16

    Increased expression of IL-16 in the brain of experimental autoimmune encephalomyelitis

    Get PDF
    Multiple Sclerosis (MS) is a demyelinating disease of the CNS, whose pathophysiology involves both inflammatory and neurodegenerative components. CD4+ T cells are one of the key mediators of disease initiation and progression; however CD4 i s also the receptor for the pro-inflammatory cytokine, interleukin - 16 (IL - 16). IL - 16 has been proposed to play a role in several autoimmune diseases, but the exact role of IL - 16 in the CNS during MS initiation and progression remains unclear. Therefore, the aim of this study was to examine the expression and distribution of IL - 16 in CNS tissue and investigate whether expression levels correlate with neuro-inflammation in experimental autoimmune encephalomyelitis (EAE), a murine model of MS. EAE was induced in 6 week old C 57BL/6J female mice by immunisation with MOG35 - 55 peptide and adjuvants. Tissue was harvested at onset (day 11), peak (day 16) and resolution (day 26), and immunofluorescence staining carried out to determine CD45, CD4 and IL - 16 expression and localisation in the brain of both control and EAE mice. In addition, co-localisation of IL - 16 with CNS and immune cell subtypes was performed using a Mesolens microscope (McConnell et al., 2016), which allows subcellular detail to be obtained from wide - field epifluorescence images. Expression of IL - 16 and CD4 was observed primarily within the lesions of cerebellum and hippocampus of the EAE brain, whereas little expression was observed in control brains. IL - 16 expression was highest at onset with 76 ±2.8% of cells ( n=3) within these lesions expressing IL - 16. This was reduced to 48±2.4% (n=3) at peak and 16 ±1.3% at resolution (n=3). Co-localization studies revealed that IL - 16 was expressed primarily by infiltrating immune cells but not by neurons or astrocytes. Co-localization of IL - 16 with immune cells in brain lesions of EAE mice suggests that infiltrating immune cells are the primary source of IL - 16. Further investigation is required if IL - 16 is pro-inflammatory or anti-inflammatory in the CNS during EAE

    Protease-activated receptor 2 : are common functions in glial and immune cells linked to inflammation-related CNS disorders?

    Get PDF
    Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However recent evidence reveals that alternative routes of activation also occur and that PARs signal via multiple pathways and that pathway activation is activator-dependent. Given our increased understanding of PAR function both under physiological and pathophysiological conditions; one aspect that has remained a constant is the link between PAR2 and inflammation. PAR2 is expressed in immune cells of both the innate and adaptive immune system and has been shown to play a role in several peripheral inflammatory conditions. PAR2 is similarly expressed on astrocytes and microglia within the CNS and its activation is either protective or detrimental to CNS function depending on the conditions or disease state investigated. With a clear similarity between the function of PAR2 on both immune cells and CNS glial cells, here we have reviewed their roles in both these systems. We suggest that the recent development of novel PAR2 modulators, including those that show biased signalling, will further increase our understanding of PAR2 function and the development of potential therapeutics for CNS disorders in which inflammation is proposed to play a role

    Anti-CD52 antibody treatment in murine experimental autoimmune encephalomyelitis induces dynamic and differential modulation of innate immune cells in peripheral immune and central nervous systems

    Get PDF
    Anti-CD52 antibody (anti-CD52-Ab) leads to a rapid depletion of T and B cells, followed by reconstitution of immune cells with tolerogenic characteristics. However, very little is known about its effect on innate immune cells. In this study, experimental autoimmune encephalomyelitis mice were administered murine anti-CD52-Ab to investigate its effect on dendritic cells and monocytes/macrophages in the periphery lymphoid organs and the central nervous system (CNS). Our data show that blood and splenic innate immune cells exhibited significantly increased expression of MHC-II and costimulatory molecules, which was associated with increased capacity of activating antigen-specific T cells, at first day but not three weeks after five daily treatment with anti-CD52-Ab in comparison with controls. In contrast to the periphery, microglia and infiltrating macrophages in the CNS exhibited reduced expression levels of MHC-II and costimulatory molecules after antibody treatment at both time-points investigated when compared to controls. Furthermore, the transit response of peripheral innate immune cells to anti-CD52-Ab treatment was also observed in the lymphocyte-deficient SCID mice, suggesting the changes are not a direct consequence of the mass depletion of lymphocytes in the periphery. Our study demonstrates a dynamic and tissue-specific modulation of the innate immune cells in their phenotype and function following the antibody treatment. The findings of differential modulation of the microglia and infiltrating macrophages in the CNS in comparison with the innate immune cells in the peripheral organs support the CNS-specific beneficial effect of alemtuzumab treatment on inhibiting neuroinflammation in multiple sclerosis patients

    Mitogen-activated protein kinase phosphatase-2 deletion impairs synaptic plasticity and hippocampal-dependent memory

    Get PDF
    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer’s disease. Thus there is great interest in understanding the signalling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2-/- mice), we show that long-term potentiation (LTP) is impaired in MKP-2-/- mice compared to MKP-2+/+ controls whereas neuronal excitability, evoked synaptic transmission and paired-pulse facilitation remain unaltered. Furthermore, spontaneous excitatory postsynaptic currents (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2-/- mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures which may account for the increase in spontaneous EPSC frequency. In addition no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2-/- mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signalling

    Widefield two-photon excitation without scanning : live cell microscopy with high time resolution and low photo-bleaching

    Get PDF
    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required

    GABAB receptors suppress burst-firing in reticular thalamic neurons

    Get PDF
    Burst-firing in thalamic neurons is known to play a key role in mediating thalamocortical (TC) oscillations that are associated with non-REM sleep and some types of epileptic seizure. Within the TC system the primary output of GABAergic neurons in the reticular thalamic nucleus (RTN) is thought to induce the de-inactivation of T-type calcium channels in thalamic relay (TR) neurons, promoting burst-firing drive to the cortex and the propagation of TC network activity. However, RTN neurons also project back onto other neurons within the RTN. The role of this putative negative feedback upon the RTN itself is less well understood, although is hypothesized to induce de-synchronization of RTN neuron firing leading to the suppression of TC oscillations. Here we tested two hypotheses concerning possible mechanisms underlying TC oscillation modulation. Firstly, we assessed the burst-firing behavior of RTN neurons in response to GABAB receptor activation using acute brain slices. The selective GABAB receptor agonist baclofen was found to induce suppression of burst-firing concurrent with effects on membrane input resistance. Secondly, RTN neurons express CaV3.2 and CaV3.3 T-type calcium channel isoforms known contribute towards TC burst-firing and we examined the modulation of these channels by GABAB receptor activation. Utilizing exogenously expressed T-type channels we assessed whether GABAB receptor activation could directly alter T-type calcium channel properties. Overall, GABAB receptor activation had only modest effects on CaV3.2 and CaV3.3 isoforms. The only effect that could be predicted to suppress burst-firing was a hyperpolarized shift in the voltage-dependence of inactivation, potentially causing lower channel availability at membrane potentials critical for burst-firing. Conversely, other effects observed such as a hyperpolarized shift in the voltage-dependence of activation of both CaV3.2 and CaV3.3 as well as increased time constant of activation of the CaV3.3 isoform would be expected to enhance burst-firing. Together, we hypothesize that GABAB receptor activation mediates multiple downstream effectors that combined act to suppress burst-firing within the RTN. It appears unlikely that direct modulation of T-type calcium channels is major contributor to this suppression

    Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing

    Get PDF
    Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present
    corecore