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Abstract. 

Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) 

whose activation requires the cleavage of the N-terminus by a serine protease.  However recent 

evidence reveals that alternative routes of activation also occur and that PARs signal via multiple 

pathways and that pathway activation is activator-dependent.  Given our increased understanding 

of PAR function both under physiological and pathophysiological conditions; one aspect that has 

remained a constant is the link between PAR2 and inflammation.  PAR2 is expressed in immune 

cells of both the innate and adaptive immune system and has been shown to play a role in several 

peripheral inflammatory conditions.  PAR2 is similarly expressed on astrocytes and microglia 

within the CNS and its activation is either protective or detrimental to CNS function depending 

on the conditions or disease state investigated.   With a clear similarity between the function of 

PAR2 on both immune cells and CNS glial cells, here we have reviewed their roles in both these 

systems.  We suggest that the recent development of novel PAR2 modulators, including those 

that show biased signalling, will further increase our understanding of PAR2 function and the 

development of potential therapeutics for CNS disorders in which inflammation is proposed to 

play a role.  

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION  

Protease-activated receptors (PARs) are a family of G-protein coupled receptors that are unique 

in their mechanism of activation.  Cleavage of the N-terminus by serine proteases unveils a 

‘tethered ligand’ which binds to the second extracellular loop of the receptor leading to the 

activation of signalling pathways (Figure 1).  PARs were first discovered following 

investigations into the role of thrombin in platelet aggregation which lead to the identification of 

PAR1 and its unique mechanism of activation [1,2] which was closely followed by the discovery 

of PAR2 [3,4] and PAR3 and 4 [5-8]. Of the PAR family members cloned to date, research into 

PAR1 has been the most progressive. The PAR1 crystal structure has recently been resolved [9] 

and in 2014, the first PAR1 selective antagonist, Vorapaxar, was FDA approved for clinical use 

in the US to reduce the risk of heart attack, stroke and other cardiovascular-related deaths [10]. 

Whilst efforts have been made to generate antagonists for the other PAR family members, it is 

clear that further understanding of their roles and regulation are required.     

 

A key feature of all the PARs is that they can be cleaved by serine proteases, for example 

thrombin, trypsin, tryptase and kallikreins [11-13], at an arginine residue in the N-terminus 

which reveals a tethered ligand that is specific to each receptor.  Identification of these tethered 

ligand sequences helped increase our understanding of the roles and functions of PARs through 

using synthetic activating peptides based on these sequences (PAR-APs) but diligence is required 

when using such peptides and their use for CNS investigations in vivo is limited due to poor 

bioavailability [12].  In addition to their activation by serine proteases, it is now accepted that 

PARs can be activated by other non-canonical activators which cleave the PAR N-terminus at 

regions different from the canonical serine protease cleavage sites.  The first evidence of this 

came with matrix metalloprotease-1 (MMP-1) being shown to induce signalling via PAR1 by 

cleaving its N-terminus upstream of the serine protease site but still initiating signalling similar 

to that observed via the canonical pathway [14,15].  This non-canonical activation has now been 

shown for PAR1, PAR2 and PAR3 with activated protein C (APC), neutrophil elastase (NE) and 

neutrophil protease-3 being shown to activate PARs [16-20] 

.   

PARs have been shown to signal via multiple G-proteins with PAR activation leading to 

coupling with GĮq, GĮi and GĮ12/13 depending on the activator or cellular localisation (Figure 1). 



Evidence exists for PAR1 & PAR2 activation leading to signalling via all these G-protein 

subunits whereas PAR4 signals via GĮq and GĮ12/13 and PAR3 signalling remains elusive but 

current theory indicates it acts as a co-factor for PAR1 and PAR4 [21,22].  Furthermore, PAR2 

can initiate signalling via G-protein-independent mechanisms that involve the recruitment of ȕ-

arrestins (Figure 1) [23,24]. In addition to the co-factoring by PAR3, it is now acknowledged that 

homologous and heterologous PAR dimerization exists [25,26] and that PARs can transactivate 

and communicate with other receptors including EGFR and TLR4 [13].  Our increased 

understanding of the complexity of PAR activation has also lead to the appreciation that PARs 

signal via multiple pathways and that pathway activation is activator-dependent.  Given that 

many GPCRs can display functional selectivity or biased agonism [27,28],  it was proposed that 

biased agonism at PARs was an explanation for the varying results seen in these and many other 

studies.  Indeed, numerous studies have now shown that this is the case for PAR1 and PAR2 

[16,29]. Given our ever increasing knowledge regarding the multiplicity of function for PARs 

and their activation of signalling pathways, one aspect that has remained a constant is the link 

between PAR2 and inflammation. 

 

2. PAR2 and the immune system. 

PAR2 are expressed on the majority of immune cells spanning both the innate and the adaptive 

immune system with receptor activity being proposed to be involved in inflammatory-related 

conditions ranging from arthritis to obesity and metabolic syndrome.   

 

2.1. The innate immune system. 

Neutrophils: Within the innate immune system, PAR2 was initially shown to be expressed on 

neutrophils where its activation lead to an elevation in intracellular Ca
2+

 and promoted neutrophil 

shape changes with exposure to a PAR2-AP and a neutrophil activator leading to a synergistic 

increased expression of Macrophage-1 antigen (Mac-1) [30].  In addition PAR2 activation in 

human neutrophils increases cell motility, elevates the expression of Mac-1 and integrin VLA-4 

and stimulates the release of a number of cytokines and glycoproteins known to be required for 

neutrophil function [31,32].  As to the role of PAR2 in neutrophil function, previous studies have 

shown that neutrophil protease 3 (PR3) can cleave and activate PAR2 [33]. The action of PR3 

via PAR2 was latterly proposed to underlie the non-opsonic phagocytosis of bacteria by 



neutrophils [34].  Furthermore, PAR2-dependent neutrophil activation has recently been shown 

to modulate IFN- anti-viral activity in human neutrophils (Table 1) [35]. 

Eosinophils: Human eosinophils express PAR2 where its activation leads to degranulation, 

generation of reactive oxygen species and modulation of eosinophil function (Table 1) [36,37].  

These findings are important with regard to the activation of PAR2 by proteases released by 

allergenic organisms and their link to airway diseases including asthma but recent conflicting 

reports regarding the role of PAR2 in house dust mite allergen-induced lung inflammation 

[38,39] indicate further investigation is required. 

Monocytes: Human blood monocytes have been shown to express PAR2 as well as other PARs 

with its activation resulting in intracellular Ca
2+

 increases and stimulating the release of 

interleukin (IL)-1ȕ, IL-6 and IL-8 (Table 1) [40-42]. Recent evidence has revealed elevated 

PAR2 expression levels in monocytes isolated from patients with rheumatoid arthritis [43] 

adding further weight to the critical role of PAR2 in this disease. PAR2 monocyte expression has 

also been implicated in arteriogenesis with studies in PAR2
-/-

 mice highlighting a role in 

promoting the repair-associated responses in ischemic tissues [44]. 

Macrophages: Monocyte-derived macrophages express PAR2, the activation of which leads to 

increases in intracellular Ca
2+

 but prolonged exposure to IL-4 leads to a reduction in PAR2 

expression [40].  In addition, human alveolar macrophages and vascular macrophage-derived 

foam cells also expressing PAR2 (Table 1). Inhibition of PAR2 has recently been demonstrated 

to limit macrophage infiltration associated with arthritogenesis [45] and PAR2
-/-

 mice are 

protected from viral infection [46] revealing that PAR2 activation negatively regulates the TLR3 

antiviral pathway in macrophages. Furthermore, PAR2 activation is reported to promote an anti-

inflammatory M2-like macrophage phenotype in LPS-treated macrophages [47].  PAR2 

expression has also been shown in microglial cells, the macrophages of the brain but this will be 

explored in more detail when introducing PAR2-associated glial function. 

Dendritic cells (DC): Initial studies confirmed the expression of PAR2 mRNA in monocyte-

derived DCs however studies have failed to detect PAR2 protein expression on the surface of 

these cells [40] with blood DC also lacking PAR2 protein expression [48].   Despite these early 

findings, PAR2 activation promotes DC maturation (Table 1) [33,49,50] with proposed roles in 

DC trafficking to the lymph nodes [51]. PAR2 activity in myeloid DC is also important in the 



regulation of allergic airway responses [52] with PAR2 activation by tissue factor suppressing T 

cell priming [53]. 

Mast cells (MC): The critical role of MC in innate immunity is well established but recently a 

role in adaptive immunity has been proposed including in response to infection by a variety of 

organisms [54]. MC express PAR2 [55-57] with receptor activation in most cases resulting in 

MC activation and degranulation (Table 1) [56,58] whereas this is not the case for peritoneal 

MCs [59,60]. Importantly, the serine protease released by MC, mast cell tryptase, is a known 

activator of PAR2 [61-63] and has been proposed to be involved in numerous inflammatory 

reactions and diseases [12,13,64] and be a major contributor to postoperative nociception 

through its ability to activate PAR2 [65,66]. 

 

2.2. The adaptive immune system 

PAR2 is expressed in several lymphocyte cell types associated with the adaptive immune system 

but is not expressed in B cells either at the mRNA or protein level [42].  In contrast PAR2 is 

expressed in both human and mouse T cells [67-69] with a recent study indicating PAR2 

expression on human CD4+ and natural killer cells but not CD8+ or ܵį T cells (Table 1) [42].  

With regard to the function of PAR2 on lymphocytes, PAR2 activation has been shown to 

increase leukocyte rolling and adhesion [70] which was confirmed in PAR2 deficient mice 

[71,72] with the PAR2–T cell interaction being linked to several inflammatory conditions and 

diseases [12,13,64]. 

 

2.3. What roles does PAR2 play in peripheral inflammatory diseases? 

Given the presence of PAR2 on cells both of the innate and adaptive immune system, it is no 

surprise that evidence exists for PAR2 being involved in inflammatory diseases.  As we will 

focus on central nervous system (CNS) cells and disorders later in the review, here we introduce 

evidence supporting a role for PAR2 in peripheral inflammatory diseases. 

 

2.3.1. Neurogenic inflammation: Sensory afferent neurones express PAR2 and is largely co-

localised with neuropeptides including CGRP and substance P [72,73].  Release of these 

neuropeptides is known to induce a number of responses including oedema and granulocyte 

infiltration associated with a site of inflammation.  Similar responses were observed following 



PAR2 activation thus revealing that PAR2 has a role to play in neurogenic inflammation through 

the stimulation of neuropeptide release [69,72,73].  This effect is mediated by direct neuronal 

activation rather than via mast cell activation as mast cell stabilisation did not alter these 

observed effects [70].  Further to its role in neurogenic inflammation, PAR2 has been implicated 

in nociceptive signalling with PAR2 activation activating nociceptors and inducing hyperalgesia 

with the underlying mechanisms proposed to include a reduction in the excitation threshold of 

certain transient receptor potential (TRP) channels [75,76] and BDNF/trkB/aPKC signalling 

[77]. 

 

2.3.2. Arthritis:  Extensive evidence exists to support the role of PAR2 in arthritis with genetic 

and pharmacological manipulation revealing its role in both rheumatoid and osteoarthritis [78-

80].  The use of PAR2 deficient mice emphasised the importance of PAR2 in arthritis.  Mice 

lacking PAR2 show a complete abrogation of disease pathology associated with this condition, 

such as knee joint swelling, influx of immune cells and hyperemia. Indeed PAR2 expression is 

up-regulated following induction of chronic inflammation in both disease models thus 

highlighting that inhibiting PAR2 function is a novel therapeutic target for treating these 

inflammatory diseases.  

 

2.3.3. Gastrointestinal tract (GIT): PAR2 is widely expressed in the GIT with its activation 

shown to induce the secretion of electrolytes and fluids as well as regulating motility of colonic 

cells [81,82].  Given the expression of PAR2 in the GIT and the elevated levels of potential 

activators in inflammatory bowel disease, PAR2 is proposed to play a role in GIT inflammatory 

diseases.  Indeed, PAR2 appears to have a duality of function in pancreatitis depending on the 

disease model used and extensive evidence links PAR2 to colitis with PAR2 being shown to 

regulate endothelial permeability and leukocyte recruitment [83-85]. 

 

2.3.4. Skin: PAR2 and its signalling pathways are established to play a role in regulating 

epithelial function in the skin with PAR2 activating proteases being anchored to the epithelial 

cell membrane.  Matriptase, a known PAR2 activator, has been implicated in subcellular 

trafficking and cell surface targeting associated with epithelial cell differentiation [86].  The role 

of PAR2 in skin inflammation is closely related to the function of serine protease inhibitor 



Kazal-type 5 (SPINK5), a negative regulator of tissue kallikrein 5 (KLK5) which is a known 

activator of PAR2 [87,88]. Loss of function mutations in the SPINK5 gene are the cause of the 

genetic skin disease, Netherton syndrome. Studies in SPINK5/PAR2 double knock out mice have 

confirmed involvement of KLK5/PAR2 cascades in the early proinflammatory signalling but 

highlight other non-PAR2 pathways in the inflammatory phenotype of this disease [88-90]. 

 

2.3.5. Cancer: Upregulation of PAR2 and its activators has been shown in several cancers 

including prostate and colon cancer [91,92].  Potential activators, such as kallikreins, are 

upregulated in colon cancer cells specific to the tumour cells with minimal expression in 

surrounding tissue [91,93].. In addition, tissue factor (TF) can play an important role in the 

progression of certain cancers with the TF-VIIa complex being able to cleave and activate PAR2.  

[64].  Both TF and PAR2 are upregulated in human breast cancer with receptor activation 

promoting breast cancer angiogenesis [94] and migration [95].  Furthermore, a recent study 

proposed a novel mechanism by which PAR2 promotes cancer cell migration through the 

repression of miRNA expression [96]. 

 

3. PAR2 and CNS glial cells. 

Having outlined the role for PAR2 in the innate and adaptive immune systems in addition to its 

proposed role in inflammatory-related peripheral diseases, we will now introduce the role of 

PAR2 on the glial cells of the CNS, namely microglia and astrocytes and highlight their potential 

physiological and pathophysiological roles.  

 

3.1. Astrocytes 

PAR2 is expressed in astrocytes as evidenced using both rodent and human tissue (Table 2) 

[11,12,97].  Astrocytic PAR2 activation is known to play a number of roles including modulation 

of synaptic transmission, release of chemokines, cytokines and gliotransmitters and having both 

a neuroprotective and degenerative effect depending on the CNS disease type examined [11,12].  

Astrocytic PAR2 expression was first reported by the Reiser group which revealed that PAR2 

activation leads to increases in intracellular Ca
2+

 levels [98].  Since these initial findings, 

astrocytic PAR2 expression has been shown to be modulated by inflammatory mediators [99] 

with PAR2 activation inducing the production and release of gliotransmitters including 



chemokines and cytokines [100-103], nitric oxide [104] and glutamate [102,105] and increasing 

the expression of astrocytic  ĮA-crystallin [106].  Indeed, the production of chemokines as 

gliotransmitters has been proposed to underlie the neuroprotective role shown by PAR2 

activation when investigating C2-ceramide-induced cell death [100,101] and kainate-induced 

neurotoxicity in organotypic hippocampal slice cultures [102].  In both cases, the protective 

effect of astrocytic PAR2-mediated release of chemokines, which is independent of increases in 

intracellular Ca
2+

 [100], is mediated via the CXCR2 chemokine receptor as the selective 

antagonist, reparixin blocks the PAR2-mediated effects [101,102]. Regarding the PAR2-

mediated increases in ĮA-crystallin, it is proposed that the cytoprotective effect is mediated via 

p38 MAPK and ERK activation [107].  PAR2-induced glutamate release also contributes to the 

neuroprotective effects of PAR2-APs as the broad spectrum metabotropic glutamate receptor 

antagonist, LY341495, inhibited the PAR2-mediated neuroprotection [102].  In contrast to other 

studies, a reduction in p38 MAPK and ERK activity is proposed to underlie the PAR2-mediated 

neuroprotection as it was mimicked by pharmacologically inhibiting p38 MAPK and ERK 

activity [102].  In addition to PAR2-induced glutamate release being neuroprotective, it is also 

responsible for the indirect modulation of hippocampal synaptic transmission following PAR2 

activation [105].  Spontaneous action potential frequency is reduced in primary hippocampal 

cultures following PAR2 activation in an astrocytic-dependent manner as the glial toxin, 

fluoroacetate, abolishes these effects.  Furthermore, PAR2 activation in acute hippocampal slices 

leads to a long lasting depression of synaptic transmission which is dependent on GluN2B 

receptor activation via the astrocytic-dependent release of glutamate [105].  Hence a common 

theme throughout these studies is the integral role that astrocytes play in the effects of PAR2 

activation observed within the CNS. 

 

3.2. Microglia 

Microglia are the innate immune system of the CNS and similar to its expression in the 

peripheral innate immune system, PAR2 is expressed in microglia [104, 108], however the role 

of PAR2 on microglia has been somewhat neglected until recently. In contrast to the 

neuroprotective role observed with astrocytic PAR2 activation, recent studies have revealed that 

PAR2 activation of microglia leads to the release of mediators including nitric oxide, reactive 

oxygen species and inflammatory cytokines (Table 2) [103,109-111] that contribute to neuronal 



cell death.  In addition, microglial PAR2 activation induces an increased expression of P2X4 

receptor [112] and induces the release of brain-derived neurotrophic factor (BDNF) in a time-

dependent manner [110,112-114] both of which are suggested to contribute to the role of 

microglia in neuropathic pain.      

 

3.3. Is PAR2 expression in astrocytes and microglia linked to CNS diseases? 

Having highlighted the link between PAR2 on immune cells and peripheral inflammatory 

diseases, does astrocytic and/or microglial PAR2 play a role in CNS disorders?  Evidence 

indicates that PAR2 is indeed linked to inflammation-related CNS disorders with a duality of 

function evident depending on whether the primary action of PAR2 is either neuronal 

(protective) or glial (degenerative) [11,12]. Much of this evidence indicates that under disease 

conditions, PAR2 expression is increased with this first being shown in organotypic slice 

cultures where PAR2 expression was transiently increased following experimental ischaemia 

[115].   

 

3.3.1. Multiple sclerosis: With regard to inflammation-related disorders, PAR2 up-regulation 

was reported in experimental autoimmune encephalomyelitis (EAE). Increased receptor 

expression was observed in astrocytes and infiltrating macrophages but not neurons with PAR2 

regulating the expression of inflammatory mediators in these cell types [109].  In addition, 

increased microglial activation was observed in PAR2
+/+

 mice when compared to PAR2
-/-

 mice 

in the EAE model with reduced neurobehavioural phenotype severity in PAR2
-/-

 mice.  

Significantly, similar expression changes were observed in post-mortem MS tissue when 

compared to that of non-MS patients thus implicating glial PAR2 in MS disease progression 

(Table 2).   

 

3.3.2. Alzheimer’s disease: In addition to the link to MS, PAR2 expression was also altered in 

frontal lobe tissue taken from patients suffering from Alzheimer’s disease (AD) [110].  Whilst 

total PAR2 mRNA levels were significantly reduced in AD tissue, PAR2 immunoreactivity was 

more evident in glial cells of AD brains with a concomitant elevation of several pro-

inflammatory genes.  A role for PAR2 in AD pathology was supported by experiments 

examining the consequence of PARβ activation on macrophages and astrocytes against ȕ-



amyloid-induced neurotoxicity.  Conditioned media from PAR2-activated macrophages 

exacerbated ȕ-amyloid-induced neurotoxicity in human foetal neurons whereas conditioned 

media from astrocytes was without effect.  In contrast, it should be noted that neuronal PAR2 

activation impaired ȕ-amyloid-induced neurotoxicity.However, using an animal model of AD to 

examine the early stages of AD rather than the late stages as investigated with the post-mortem 

tissue, PAR2 mRNA levels were significantly increased in TgCRND8 mice as was the astrocytic 

marker, GFAP. Finally, investigating the toxicity of ȕ-amyloid in PAR2
-/-

 mice revealed reduced 

glial activation in PAR2
-/-

 mice and that neurobehavioural phenotypes, as shown using the 

Morris water maze, were more severe in PAR2
+/+

 mice when compared to PAR2
-/-

 mice.  These 

data indicate that PARβ glial cell activation contributes to ȕ-amyloid-induced neurotoxicity and 

AD via induction of inflammatory pathways within the CNS but the role of neuronal PAR2 

highlights the complex role of PAR2 in AD pathology (Table 2).   

 

3.3.3. Parkinson’s disease: Another CNS disorder that has neuroinflammatory links is 

Parkinson’s disease (PD) and previous evidence indicates a role for PAR1 in its progression 

[116,117], however a recent study indicates that PAR2 may also play a role [118]. PAR2 

expression was increased in the substantia nigra of MPTP-treated rats with PAR2 blockade 

leading to reduced Į-synuclein synthesis and reduced the MPTP-induced motor dysfunction.  

Importantly, NF-ڡB signalling was reduced following PARβ blockade and given the connection 

between NF-ڡB and inflammatory cytokine production, this study suggests that the PARβ-NF-

 B signalling pathway may play a role in PD disease progression.  However, this study did notڡ

determine in which cell types the PAR2 up-regulation was observed so whether PAR2 glial 

expression was responsible for these effects cannot be confirmed. 

 

3.3.4. Non-glial PAR2 and CNS diseases:  It should be noted that in contrast to the detrimental 

role of glial PAR2 activation outlined above, PAR2 activation has also been shown to be 

neuroprotective in models and post-mortem tissue from patients who have suffered a stroke 

[119] or from HIV-associated dementia [120]. In both these cases, the PAR2-mediated 

neuroprotection was suggested to be via increased PAR2 expression and activation specifically 

in neurons, thus highlighting the duality of function associated with PAR2 depending on cell 

type location [11]. 



 

 

4. Is PAR2 a realistic therapeutic target for the treatment of CNS disorders? 

Given the evidence that glial PAR2 activation is involved in disease progression in several 

inflammation-related CNS disorders, the development of PAR2 antagonists for the treatment of 

these diseases could be beneficial as a novel therapeutic strategy.  However, despite the progress 

made with PAR1 antagonists [12,28], the development of PAR2 antagonists has proven difficult, 

especially small molecule antagonists that have the ability to cross the blood brain barrier (BBB) 

as would be required for the treatment of CNS disorders. ENMD1068 is a PAR2 antagonist that 

has been shown to reduce joint inflammation in models of rheumatoid arthritis (Figure 2) [121] 

but its lack of potency has prevented its widespread use (Figure 2).  Despite the apparent 

difficulty in developing PAR2 antagonists, a number of compounds that inhibit PAR2 Ca
2+

 

signalling have emerged that are purported to act as biased antagonists.   

 

A PAR2-specific peptoid, GB88, was initially described as a surmountable competitive 

antagonist of PAR2-AP but a non-competitive antagonist of trypsin [122].  So far studies have 

shown that GB88 does not elicit increases in intracellular Ca
2+

 but blocks increases in 

intracellular Ca
2+

 initiated by PAR2 activation in a number of preparations (Figure 2) [122-125].  

It has since emerged that modulation of PAR2 activity is pathway specific [126].  Despite its 

ability to block PAR2 Ca
2+

 signalling, GB88 is able to promote PARβ ȕ-arrestin interaction and 

stimulate ERK signalling. An unusual aspect of GB88’s action is that despite it stimulating these 

interactions and signalling, it does not mediate receptor internalisation. The therapeutic potential 

for PAR2 antagonism has been highlighted with GB88 preventing several inflammatory diseases 

including experimental colitis, collagen-induced arthritis and diet-induced obesity [123,124,126].  

Whilst these studies indicate that GB88 may prove useful in the treatment of peripheral 

inflammatory diseases, our preliminary data indicates that GB88 does not cross the BBB (T. 

Bushell, unpublished observations) and therefore would not be useful in the treatment of 

inflammation-related CNS disorders.  However it may prove useful to further our understanding 

of PAR2 function in CNS diseases using in vitro methods. The use of GB88 for selective 

activation of the ERK pathway, which many studies show to be neuroprotective, may aid in the 



design of small molecule analogues which act as biased agonists for this pathway but are able to 

cross the BBB.   

 

Another proposed PAR2 antagonist is the cell-penetrating pepducins is P2pal-18S pepducin 

(Figure 2) [127].   P2pal-18S pepducin is based on the third intracellular loop of PAR2 and is 

proposed to specifically target PAR2 signalling by interfering with receptor-G-protein coupling. 

Indeed, it blocks PAR2 signalling induced by trypsin and mast cell tryptase and inhibits PAR2-

dependent inflammatory signalling in mouse models of paw oedema and mast cell driven 

inflammation [127].  However it has been suggested that P2pal-18S pepducin may act in a 

similar manner to GB88 as its action does not prevent trypsin-mediated PAR2 interactions with 

ȕ-arrestin [28].  Whether it specifically blocks the PAR2 Ca
2+

 signalling pathway whilst other 

pathway activation remains intact is as yet unknown.  How useful this method of inhibiting 

PAR2 activation will be for the treatment of CNS disorders remains to be elucidated.  Despite 

systemic administration of P2pal-18S pepducin having beneficial effects in mouse models of 

peripheral inflammation, it does not cross the BBB..  Finally and as outlined above, it should be 

noted that PAR2 activation plays a neuroprotective role under certain conditions [102,119,120]. 

The development of PAR2 agonists that penetrate the CNS would allow further investigation 

into this.  Recently developed compounds including AC264613 may fit the bill (Figure 2) [128-

130] but caution needs to be taken given the consequence that PAR2 activation has on immune 

cells and their well-established role in many CNS disorders.  

 

5. Conclusion 

There is ever increasing evidence that PAR2 plays a significant role in inflammatory diseases 

both in the periphery and in the CNS. There is a clear similarity between PAR2 expression and 

activation on cells of the immune system and those cell types that are proposed to play a role 

within the CNS, astrocytes and microglia.  Activation of both leads to the release of pro-

inflammatory cytokines which contributes to the detrimental aspects of diseases ranging from 

arthritis and colitis through to MS.  Recent studies indicate that PAR2 antagonism has 

therapeutic potential when targeting peripheral inflammatory diseases but the verification that 

PAR2 antagonism is a viable target for CNS diseases remains elusive.  Genetic studies indicate 

that PAR2 antagonism would be useful, for example in MS, as PAR2
-/-

 mice have a reduced 



neurobehavioural phenotype in the EAE model. A major factor that is limiting progress is the 

lack of available small molecule antagonists capable of crossing the BBB and therefore be 

effective in treating these CNS disorders.  Furthermore, given that studies have also revealed a 

neuroprotective and an anti-inflammatory role with regard to PAR2 activation, it also needs to be 

considered whether PAR2 agonists may prove beneficial in a disease-dependent manner. Indeed, 

recent developments regarding biased agonism and antagonism in relation to PAR signalling 

may indicate that developing compounds that selectively activate beneficial signalling pathways 

may be the way forward for targeting PAR2.  If so, careful consideration will be required to the 

potential adverse effects elicited as a consequence of central and peripheral PAR2 activation. 

Nonetheless, clear evidence exists for PAR2 being a target in a variety of inflammation-related 

diseases and further development of novel compounds will fully elucidate its therapeutic 

potential. 
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Figure legends. 

Figure 1. PAR2 activation leads to the activation of multiple signalling pathways.   

PAR2 N terminal cleavage by serine proteases leads to the exposure of a tethered ligand, which 

binds to the second extracellular loop and activates signalling pathways either via multiple G-

protein subtypes or ȕ-arrestin-dependent signalling.  With the recent discovery of PAR2 biased 

signalling, pathway activation will depend on the molecule by which it is activated. 

 

Figure 2. PAR2 inhibition or selective activation of signalling pathways via biased agonism 

may prove to be beneficial in inflammation-related disorders.  

A + B) P2pal-18S pepducin and ENMD1068  are PAR2 inhibitors that have therapeutic potential 

in peripheral diseases but have as yet to be tested in CNS disorders. C) GB88 is a proposed 

biased antagonist as it activates PAR2 mediated ERK signalling but blocks PAR2-mediated Ca
2+

 

signalling. D) AC264613 is a PAR2 small molecule agonist that may be useful in determining 

the neuroprotective properties of PAR2 activation under certain conditions. 

 

Table legends 

Table 1. Activation of PAR2 in immune cells leads to the activation of a number of immune 

responses. 

Table 2. Activation of PAR2 in CNS glial cells leads to the activation of a variety of signalling 

pathways and is proposed to be involved in the progression of multiple sclerosis and Alzheimer’s 

disease. 
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Immune cell type Cellular response to PAR2 activation 

Neutrophils ј ΀CĂ2+]i 

ј ƐŚĂƉĞ ĐŚĂŶŐĞ Θ ŵŽƚŝůŝƚǇ 

јMĂĐ-1 & VLA-4  

ј Iů-1, IL-6, IL-8 

јMPO 

јROS  
ј lactoferrin 

Eosinophils ј ĚĞŐƌĂŶƵůĂƚŝŽŶ 

јROS 

ј IL-6, IL-8 

Monocytes ј ΀CĂ2+]I 

ј Iů-1, IL-6, IL-8 

Macrophages ј ΀CĂ2+]I 

Dendritic cells ј maturation 

ј trafficking 

Mast cells activation & degranulation 

T cells ј ƌŽůůŝŶŐ Θ ĂĚŚĞƐŝŽŶ 

ј ƚǇƌŽƐŝŶĞ ƉŚŽƐƉŚŽƌǇůĂƚŝŽŶ 

B Cells PAR2 not expressed 

Table 1. 



CNS glial cell type Cellular response to 

PAR2 activation 

PAR2 and  

Multiple Sclerosis  

PAR2 and 

AůǌŚĞŝŵĞƌ Ɛ͛ ĚŝƐĞĂƐĞ 

 

Astrocytes ј ΀CĂ2+]i 

ј ŐůƵƚĂŵĂƚĞ ƌĞůĞĂƐĞ 

ј CINC-1/3 release 

ј ɲA-crystallin 

ј IL-6 

ј TNF-ɲ 

ј MAPK activity 

ј ƉƌŽůŝĨĞƌĂƚŝŽŶ 

јĂƐƚƌŽĐǇƚŝĐ PARϮ  

expression in MS brains 

љ RĞůĞĂƐĞ of 

inflammatory 

mediators in PAR2-/- 

astrocytes 

љ neuroinflammation 

in EAE PAR2-/- mice  

љ neurobehavioural 

phenotype in EAE PAR2-

/- mice  

јĂƐƚƌŽĐǇƚŝĐ PARϮ  

immunoreactivity in  

AD brains 

ј neuroinflammtory 

response and toxicity 

following astrocytic  

PAR2 activation 

љ ĂƐƚƌŽĐǇƚŝĐ ĂĐƚŝǀĂƚŝŽŶ 
in ɴ-amyloid injected 

PAR2-/- mice  

љ ŶĞƵƌŽŝŶĨůĂŵŵĂƚŽƌǇ 
respnse in ɴ-amyloid 

injected PAR2-/- mice  

 љ neurobehavioural 

phenotype in  

ɴ-amyloid injected 

PAR2-/- mice  

Microglia ј NO  

ј ROS 

ј PϮX4 

ј BDNF 

љ ŵŝĐƌŽŐůŝĂů ĂĐƚŝǀĂƚŝŽŶ 
in EAE PAR2-/- mice  

 

јŵŝĐƌŽŐůŝĂů PARϮ  

immunoreactivityin  

AD brains 

 

Table 2. 
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