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Abstract.  

Proteinase-activated receptor-2 (PAR2) is widely expressed in the CNS but whether it plays a 

key role in inflammation-related behavioural changes remains unknown.  Hence, in the 

present study we have examined whether PAR2 contributes to behaviour associated with 

systemic inflammation using PAR2 transgenic mice.  The onset of sickness behaviour was 

delayed and the recovery accelerated in PAR2-/- mice in the LPS-induced model of sickness 

behaviour. In contrast, PAR2 does not contribute to behaviour under normal conditions.  In 

conclusion, these data suggest that PAR2 does not contribute to behaviour in the normal 

healthy brain but it plays a role in inflammation-related behavioural changes.  

 

Keywords: Proteinase-activated receptor-2; LPS; sickness behaviour; locomotor activity; 

anxiety; sucrose preference. 
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1. Introduction 

Proteinase-activated receptors (PARs) are a novel class of GPCRs that are unique in their 

activation, whereby the cleavage of the N-terminus by a serine proteinase unveils a sequence 

that acts as a “tethered-ligand”. The “tethered-ligand” binds to the second extracellular loop 

of the receptor, leading to the activation of the receptor. To date, four members of the PAR 

family have been cloned, namely PAR 1-4. Of these, PAR1, 3 & 4 are preferentially activated 

by thrombin, whereas trypsin and trypsin-like proteinases are proposed to preferentially 

activate PAR2 (MacFarlane et al., 2001; Adams et al., 2011; Ramachandran et al., 2012), 

although within the central nervous system (CNS), the endogenous activators for PARs 

remain speculative. Several selective PAR-activating peptides have been developed to probe 

the distinct functions of each receptor, although evidence suggests diligence is required when 

using such agonists and their use for CNS investigations in vivo is limited due to poor 

bioavailability (Ramachandran et al., 2012). To overcome these issues, novel non-peptidic 

agonists, including AC-264613 and GB110, with high potency and good stability have been 

developed (Gardell et al., 2008; Barry et al., 2010). 

Despite PAR2 being expressed in neurones, astrocytes, microglia and oligodendrocytes 

within both the human and rodent CNS (Noorbakhsh et al., 2003; Bushell, 2007), there 

remains a large void in our knowledge as to the functional role of PAR2 in the brain.  

Evidence from both human and experimental models has implicated PAR2 in CNS disorders 

including Alzheimer’s disease (AD), HIV dementia, multiple sclerosis and stroke (Jin et al., 

2005; Noorbakhsh et al., 2005, 2006).  However, much of this is indirect in the form of 

observed alterations in PAR2 expression rather than evidence of an active role in disease 

pathogenesis per se. Indeed, data suggest that PAR2 activation can be protective or pro-

degenerative depending on the cell type (neurones or astrocytes) where increased expression 

is observed (Bushell, 2007; Jin et al., 2005; Noorbakhsh et al., 2005, 2006).  Recent studies, 
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including those from our laboratory, have provided direct functional evidence that PAR2 

activation is neuroprotective, an effect mediated indirectly via astrocytic activation, 

chemokine release and inhibition of MAPK signalling (Wang et al., 2007; Greenwood and 

Bushell, 2011).  Furthermore, we and others have previously shown in primary hippocampal 

cultures that PAR2 activation evokes physiological elevations in intracellular calcium (Ca2+) 

through the Gq / PLC pathway (Wang et al., 2002; Bushell et al., 2006) and we were recently 

the first to report that PAR2 activation modulates hippocampal neuronal excitability and 

synaptic transmission in vitro (Gan et al., 2011).  Interestingly, despite the presence of PAR2 

on neuronal populations, this modulation of neuronal excitability and synaptic transmission 

appears indirect and mediated via astrocytic activation. This mirrors the neuroprotective role 

of PAR2 which is also primarily mediated via astrocytic activation.   

However, despite PAR2 activation modulating synaptic activity and being neuroprotective in 

in vitro preparations, whether PAR2 plays a key role in behaviour examined in the normal 

brain under healthy conditions or under conditions favourable for its activation remains 

unknown.   Hence, in the present study, we have utilised F2RL1 genetically modified mice to 

examine the contribution of PAR2 to inflammation-related behavioural changes and to 

locomotor activity, anxiety- and anhedonic-like behaviour and spatial reference memory 

under normal conditions. Our novel findings indicate that PAR2 contributes to inflammation-

related changes in behaviour and that the role of PAR2 in inflammation-related CNS 

disorders should be examined further to fully elucidate its therapeutic potential.  
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2. Materials and Methods 

2.1. Animals 

F2RL1 genetically modified mice (PAR2+/+, PAR2+/- and PAR2-/-), which are bred on a 

C57BL/6J background, were obtained from multiple crossings of 14 pairs of PAR2+/- mice 

which were supplied by Professor R. Plevin, University of Strathclyde (Ferrell et al., 2003). 

C57BL/6J mice used for vehicle control experiments were obtained from in house colonies 

from the Biological Procedures Unit, University of Strathclyde.  All mice were 12 weeks old 

at the commencement of behavioural testing. They were housed at 21±2 ºC and 45-55% 

humidity, with a 12/12 hours light/dark cycle (lights on at 0600, off at 1800). Mice were 

group-housed according to genotype (housed 3-10 per cage depending on availability but 

testing was performed on a minimum of 6 mice per genotype per run) except where required 

to be singly housed for the purposes of the experiment, provided with environmental 

enrichment in the form of plastic huts and nesting material, and given ad libitum food and 

water. Procedures were in compliance with the requirements of the UK Animals (Scientific 

Procedures) Act 1986. In all experiments, mice were handled on the day prior to the 

beginning of testing to habituate the animals to the tester and all data is generated from 

repeated experiments of at least two cohorts of mice. 

2.2. Behavioural testing 

Testing in the open field test (OFT), elevated plus-maze (EPM) and the Morris water maze 

(MWM) was carried out on 48 males (26.0 ± 0.4g; n=16 for all 3 genotypes), during the light 

cycle. 
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2.2.1. Open field test 

Mice were placed in the centre of an open field 40 x 40 x 40cm (lighting 45 lux)  made from 

black infrared light (IR)-translucent Perspex placed on an in IR light box (Tracksys, 

Nottingham, UK). Total distance moved and entries into and time spent in a 14 x 14 cm 

centre square were recorded for 10 min by tracking software (Ethovision, Noldus, 

Netherlands). 

2.2.2. Elevated plus-maze 

 Mice were placed in the centre (45 lux) of a plus-shaped maze with two open (30 x 5cm, 60 

lux) and two closed arms (30 x 5cm, 15 cm walls, 6 lux) made of IR-translucent Perspex with 

integral IR light sources elevated 70cm from the floor (Tracksys, Nottingham, UK). Entries 

into each type of arm were recorded for 10 min by Ethovision software (Noldus, Netherlands) 

and the total number of entries, % open arm entries and % open arm time calculated. 

 

2.2.3. Morris Water Maze 

Mice were tested in a 98 cm diameter maze containing water at 21ºC with a transparent 10 

cm diameter submerged platform, in a room (45 lux) with extra-maze cues. 3-4 times daily 

for 5 days, mice were released at one of 4 randomly varied points, and swam until they 

located the platform. Platform location remained constant for each mouse.  On the final trial 

of day 5, the platform was removed and mice allowed to swim for 60s (probe test). Time 

spent in the quadrant of the previous location of the platform (target quadrant) and the 

opposite quadrant was recorded.  
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2.2.4. Sucrose preference test 

Prior to the test, each mouse was singly housed and each cage was supplied with two bottles 

of tap water. The amount of water drunk was measured daily by weight for two consecutive 

days in order to determine which bottle position, either left or right, was preferred. The 

sucrose preference test was started by replacing the water bottle in the non-preferred position 

with an identical bottle containing 1% sucrose solution. On subsequent days the position of 

the two bottles was randomly determined to avoid a place preference. The amount of water 

and sucrose consumed was measured daily over the whole experimental period and the % 

sucrose drunk calculated. Daily food intake and body weight was also measured over the 

whole period. 

2.2.5. LPS-induced sickness behaviour 

LPS-induced sickness behaviour was investigated in 39 male mice (27.7 ± 0.6g; PAR2+/+ 

n=12, PAR2+/- n=11, PAR2-/- n=9, vehicle controls n=7). On day 1, mice were handled and on 

day 2 they were singly housed with two water bottles. Sucrose preference testing (SPT) was 

then carried out over days 4-7. On day 8, baseline parameters of the OFT, SPT, food intake 

and body weight were measured. On day 9, mice were injected with either LPS (1 mg kg-1 in 

PBS; extracted from S. Enteritidis, Sigma-Aldrich, UK, Cat No. L6011) or PBS alone 

(vehicle) and OFT, SPT, food intake and body weight parameters measured at baseline prior 

to injection and 0 , 2 , 24, 48 and 72h post LPS injection. Baseline measurements were taken 

in the morning at 10.00. 
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2.3. Quantitative RT-PCR 

2.3.1. LPS injection 

C57BL/6J male mice (10-12 weeks old) were given a single injection of either LPS (1 mg kg-

1 in PBS) or PBS alone and the cerebellum, hippocampus and hypothalamus collected either 

2 hours (PBS n=5, LPS n=4) or 24 hours (n = 5 per group) post injection and stored in 

RNAlater tissue storage solution (Life Technologies, Paisley, UK) at <4oC until processing.   

2.3.2. RNA isolation and reverse transcription 

Total RNA was isolated from rodent brain regions using the RNeasy Lipid Tissue Mini Kit 

(QIAGEN Ltd, Manchester, UK) standard protocol, then DNased using the TURBO DNA-

free kit (Life Technologies Ltd., Paisley, UK). 500ng RNA was reverse transcribed using the 

ImProm-II Reverse Transcription System (Promega UK, Southampton, UK) with random 

primers (0.5 mg; 6.0 mM MgCl2) in a 20µL reaction volume, which was subsequently diluted 

to 100µL with water to provide cDNA template for realtime PCR. Negative water blank and -

RT controls were used throughout. 

2.3.3. Real-time PCR 

Cycle threshold (Ct) values were generated on an ABI 7900 HT Prism Sequence Detection 

System (Applied Biosystems, Foster City, CA, USA) using the Universal ProbeLibrary 

(UPL) System (Roche Applied Science) and ABsolute QPCR ROX Mix (Abgene). qRT-PCR 

results were analysed using the relative quantification method of comparative Ct (ǻǻCt), 

with -Actin acting as the calibrator or ‘housekeeping’ gene for mouse and rat samples and 

GAPDH for human samples. Expression of the calibrator genes was stable and did not differ 

significantly between control and treatment groups (data not shown). All assays were 

designed using the online ProbeFinder software (lifescience.roche.com) to generate primer 
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sequences (Table 1), except for mouse -actin, which used the commercially-available 

Universal Probe Library Mouse ACTB Gene Assay (Roche). Each reaction contained 100nM 

of the relevant Universal Probe, 400nM of each primer, 2µl diluted cDNA and 5.0µl 

ABsolute QPCR ROX Mix (VWR International, Lutterworth, UK) in a final volume of 10µl. 

Reactions were run in triplicate, with the mean Ct value from the three reactions used for 

subsequent data analysis.  

2.4. Statistics 

All data are expressed as mean ± S.E.M. Data were compared by paired or unpaired Student’s 

t-tests, one-way analysis of variance with Tukey’s comparison or 2-way mixed-model 

ANOVA followed by Bonferroni post-hoc comparisons as appropriate. Differences were 

considered significant when P<0.05.    
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3. Results  

3.1. PAR2 contributes to LPS-induced sickness behaviour  

PAR2 is proposed to play a role in several CNS and peripheral diseases whose aetiology and 

pathology are closely linked to inflammation including Alzheimer’s disease (AD), Multiple 

Sclerosis (MS) and rheumatoid arthritis (Ferrell et al., 2003; Noorbakhsh et al., 2006; 

Afkhami-Goli et al., 2007).  Hence, we used the LPS-induced sickness behaviour model of 

systemic infection to examine whether PAR2 is involved in a number of the behavioural 

changes associated with activation of the immune system. 

3.1.1. Open field test. 

In the OFT, LPS injection (1mg kg-1) resulted in a significant reduction in locomotor activity 

over the first 24 h after injection compared to vehicle-injected controls (2h post injection, 

p<0.001 for all 3 genotypes vs vehicle control), which returned to levels similar those 

observed in vehicle-injected controls by 72 h (p>0.05 for all 3 genotypes vs vehicle control, 

Figure 1A). However,  PAR2-/- mice showed significantly increased locomotion at 24 h and 

48 h post injection compared with PAR2+/+ (24 h: F(2,29)=4.269, p=0.0237, PAR2+/+ versus 

PAR2-/-
 p=0.0217; 48h: F(2,29)=3.960 p=0.0301, PAR2+/+ versus PAR2-/-

 p=0.0217, Figure 

1A).  Furthermore, the number of entries into the centre square at 24 h post injection was 

increased in PAR2-/- mice when compared with PAR2+/+ (F(2,29)=3.727, p=0.0362, PAR2+/+ 

versus PAR2-/-
 p=0.0282, Figure 1B).  With regard to time spent in the centre square, 

following LPS injection, no differences were observed between genotypes at any time point 

investigated. 
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3.1.2. Sucrose preference test. 

Another behavioural characteristic associated with sickness behaviour is the induction of 

anhedonia.  We therefore used the sucrose preference test to investigate whether PAR2 

contributes to the induction and maintenance of anhedonia under these experimental 

conditions.  All mice showed a sucrose preference over the 3 days prior to LPS injection with 

no significant differences observed over the 3 days (F(2,60)=0.327,  p=0.723) or between 

genotypes (F(2,30)=0.072,  p=0.931, Figure 2A).  Similarly, no effect of day (F(2,58)=0.097, 

p=0.908) or genotype (F(2,29)=1.948,  p=0.161, Fig 2B) were seen in the total fluid drunk.  

These data indicate that PAR2 plays no role in sucrose preference or fluid intake in normal 

healthy mice and therefore we can use this model to investigate the role of PAR2 in LPS-

induced anhedonia. 

The effect of LPS injection on the % sucrose drunk was significantly reduced in the first 2 h 

post injection (F(2,29)=3.751, p=0.035, PAR2+/- versus PAR2-/-
  p=0.035, PAR2+/+ versus 

PAR2-/-
 p=0.119). Thus, the onset of anhedonia is delayed in the PAR2-/- mice when 

compared to PAR2+/- mice and shows a trend towards a delay when compared to PAR2+/+ 

mice (Figure 2C).  

3.1.3. Food intake and change in body weight. 

We also examined whether PAR2 deletion contributes to the changes in food intake and body 

weight associated with sickness behaviour. No difference in initial body weight and food 

intake was observed between all three genotypes and the vehicle control group prior to LPS 

injection (p>0.05 for all 4 groups for both measures, data not shown) whereas food intake 

was significantly increased in PAR2+/- mice compared to PAR2+/+ 48h post injection. At the 

same time point PAR2-/- mice also showed a trend towards increased food intake. 

(F(2,29)=5.480, p=0.010, PAR2+/- versus PAR2+/+ p=0.010, PAR2-/- versus PAR2+/+ p=0.086, 
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Figure 3A).   Furthermore, the % change in body weight was significantly less in PAR2-/- 

mice at both 48h and 72h post injection when compared to PAR2+/+ mice (48 h: F(2,29)=3.309, 

p=0.051, PAR2-/- versus PAR2+/+ p=0.040; 72 h: F(2,29)=3.806, p=0.034, PAR2-/- versus 

PAR2+/+ p=0.027, Figure 3B). The effect of LPS on total fluid intake also differed between 

genotypes (F(2,29)= 9.000, p=0.001). PAR2-/- mice drank significantly more total fluid than 

PAR2+/+ (p=0.004) and PAR2+/- (p=0.001) in the first 2 h post injection (data not shown), 

which may be part of a more robust response to inflammation.     

3.1.4. Habituation  

In order to confirm that habituation does not contribute to the observed changes in behaviour, 

we conducted control experiments using the same time schedule as in the LPS experiment to 

examine the effect of habituation to repeated testing  in the OFT. No significant effect of 

habituation on the OFT was observed, which indicates that effects seen in LPS-injected mice 

are those of LPS alone and not habituation. 

3.2. PAR2 expression is unaltered under inflammatory CNS conditions.  

Having established that PAR2 contributes to LPS-induced sickness behaviour and associated 

food intake and body weight changes, we examined whether CNS PAR2 expression was 

altered following LPS injection. PAR2 mRNA was detected in the three brain regions 

examined, the hypothalamus, hippocampus and the cerebellum obtained from control mice 

(PBS injection) and mice exposed to a single LPS injection (1mg kg-1).  Two hours post-

injection, a time point at which behavioral changes were observed, no significant difference 

in PAR2 mRNA levels was observed in the hypothalamus (PBS ǻCt=10.1±0.4 (n=5) vs LPS 

ǻCt=9.9±0.2 (n=4); p=0.79, Figure 4A), the hippocampus (PBS ǻCt=8.4±0.2 (n=5) vs LPS 

ǻCt=8.3±0.4 (n=4); p=0.91, Figure 4A) or the cerebellum (PBS ǻCt=9.4±0.2 (n=5) vs LPS 

ǻCt=9.4±0.3 (n=4); p=0.91, Figure 4A).  In contrast, mRNA levels for the inflammatory 
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cytokines interleukin (IL)-1ȕ and tumour necrosis factor (TNF)-Į, are significantly increased 

in all three brain regions (p<0.01 for all regions, Figure 4A).  Similarly, no significant 

difference in PAR2 mRNA levels was observed 24 hours post-injection between control mice 

and those exposed to a single LPS injection (1mg kg-1) in the hypothalamus (PBS 

ǻCt=10.7±0.2 vs. LPS ǻCt=10.3±0.8; p=0.62, each group n=5, Figure 4B), the hippocampus 

(PBS ǻCt=10.8±0.6 vs. LPS ǻCt=11.1±0.4; p=0.75, each group n=5, Figure 6B) and the 

cerebellum (PBS ǻCt=10.5±0.4 vs. LPS ǻCt=9.5±0.1; p=0.08, each group n=5, Figure 4B).  

IL-1ȕ (p=0.04) and TNF-Į (p=0.03) mRNA levels were significantly increased in the 

hypothalamus 24 hours post LPS injection as was TNF-Į (p=0.02) in the cerebellum but no 

significant changes were evident in all other samples 24 hours post LPS injection.   

3.3. PAR2 deletion does not alter locomotor activity, anxiety-like behaviour or spatial 

memory.  

3.3.1. Open field test. 

General locomotor activity as measured by the distance moved over the testing period was 

unaffected (F(2,45)=0.523, p=0.596, Figure 5A) as was the number of entries into the centre 

square (F(2,45)=1.690, p=0.196, Figure 5B).  However, PAR2+/- mice spent significantly more 

time in the centre square compared to both PAR2+/+ and PAR2-/- mice (F(2,45)=8.718,  

p=0.0006, PAR2+/- vs. PAR2+/+ p=0.005, PAR2+/- vs. PAR2-/- p=0.001, PAR2+/+ vs. PAR2-/- 

p=0.827, Figure 5C) indicating that PAR2+/- mice may be less anxious under these 

behavioural conditions. 

3.3.2. Elevated Plus Maze. 

PAR2 deletion did not affect anxiety-like behaviour in the EPM test as no significant 

differences were observed between genotypes in the % time spent in open arms (F(2,46)= 
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0.261, p=0.771, Figure 5D) , % open arm entries (F(2,47)=0.114, p=0.893, Figure 5E) and the 

number of total entries (F(2,47)=0.763, p=0.472, Figure 1F) over the 10 min test period.   

3.3.3. Morris water maze. 

As we have previously shown that PAR2 activation induces a form of hippocampal synaptic 

plasticity in vitro (Gan et al., 2011), we examined whether PAR2 plays a role in spatial 

memory formation using the MWM. There was a significant effect of day in both latency to 

locate platform (F(4,180)=50.036, p=0.0005, Figure 6A) and distance travelled to the platform 

(F(4,180)= 50.1, p=0.0005, Figure 6B) over the 5 consecutive testing days.  However, there was 

no significant effect of genotype and no interaction between day and genotype in both latency 

to locate platform (genotype: F(2,42)=0.716, p=0.494,interaction: F(8,180)=0.178, p=0.994, 

Figure 6A) and distance travelled (genotype: F(2,42)=0.372, p=0.692, interaction: 

F(8,180)=0.328, p= 0.954, Figure 6B ).  In addition, during a subsequent probe test mice spent 

significantly more time in the  target quadrant compared to that spent in the opposite quadrant 

(p<0.001 for all genotypes) but there was no significant difference between genotypes 

(F(2,44)=1.517; p=0.230, Figure 6C). These data indicate that PAR2 deletion has no 

deleterious effect on spatial reference memory. 
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4. Discussion 

In the present study, we show for the first time that PAR2 contributes to the onset and 

maintenance of LPS-induced sickness behaviour whereas, in contrast, our data suggests that 

PAR2 does not contribute to locomotor activity and anhedonic-like behaviour under normal 

healthy conditions.  In addition, we show that under neuroinflammatory conditions within the 

CNS, no change in PAR2 expression is observed indicating that PAR2 activation per se 

contributes to inflammation-induced changes in behaviour rather than altered expression. 

4.1. PAR2 activation participates in the onset and maintenance of sickness behaviour. 

PAR2 has been reported to be extensively expressed within the CNS from both rodent and 

human tissue, with a strong link to inflammation-related diseases (Bushell, 2007; 

Ramachandran et al., 2012). Hence, we examined the role of PAR2 in behavioural tests in 

which the conditions for its activation were favourable.  It has been suggested that PARs may 

become activated under inflammatory conditions where the blood brain barrier (BBB) 

becomes leaky (Gingrich and Traynelis, 2000; Bushell, 2007), hence we utilised a well-

established model of systemic infection that is used extensively to examine the role of 

inflammatory mediators on behaviour, namely LPS-induced sickness behaviour (Dantzer et 

al., 2008; McCusker and Kelly, 2013).  Sickness behaviour can be measured using a number 

of parameters and we focused on locomotor activity and the induction of anhedonia as well as 

changes in food intake and body weight.  Our data shows that sickness behaviour was 

induced post LPS injection in all genotypes tested but deficits in its induction and 

maintenance was apparent in PAR2-/- mice.  Indeed in the SPT, the decrease in sucrose 

preference was delayed in PAR2-/- mice post LPS injection whereas in the OFT, an increased 

recovery in distance moved and entry into centre squares was observed in PAR2-/- mice post 

LPS injection. Furthermore, the decrease in body weight was significantly reduced 24 and 72 



16 

 

hours post injection.  These data suggest for the first time that PAR2 contributes to the onset 

and maintenance of LPS-induced sickness behaviour when examined using these 

characteristic behavioural outcomes associated with sickness behaviour.  So how is PAR2 

involved? Our understanding of brain-immune interactions has developed significantly since 

the brain was thought to be an immune privileged site. It is suggested that peripheral 

infections and the inflammatory cytokines this induces cross the leaky BBB leading to the 

behavioural symptoms associated with sickness with recent evidence also indicating that 

these pro-inflammatory cytokines are also synthesised within the brain during systemic 

infections (Dantzer et al., 2008; Cunningham et al., 2009; Schedlowski et al., 2014).  Some of 

the main protagonists suggested to underlie the observed behavioural changes include the 

pro-inflammatory cytokines IL-1ȕ, IL-6 and TNFĮ with numerous studies confirming that 

these cytokines are increased following systemic infections as well as their direct application 

to the brain leading to changes in behaviour similar to those seen in sickness behaviour 

(Montkowski et al., 1997; Bluthé et al., 2000; Cunningham et al., 2009; McCusker and Kelly, 

2013). Following this causal link between pro-inflammatory cytokines and sickness 

behaviour, a recent study revealed a link between LPS, the induction of the pro-inflammatory 

cytokine IL-32 and PAR2 activation (Nakayama et al., 2013).  Indeed LPS significantly 

increased IL-32 production in THP-1 cells which in turn up-regulated proteinase-3 activity 

leading to PAR2 activation and TNFĮ production.  In addition, there is evidence that LPS 

induces elevated levels of other potential endogenous PAR2 activators (Scarisbrick et al., 

2006 and Kirshenbaum et al., 2008) but whether these contribute to the role of PAR2 in the 

onset and maintenance of sickness behaviour either by crossing the BBB or by induction of 

their production within the brain itself requires further investigation.  In addition to LPS 

resulting in sickness-like behaviour, administration of LPS has also been shown to impair 

cognitive function as evidenced in tests of avoidance learning (Sparkman et al., 2005a), 
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contextual fear conditioning (Pugh et al., 1998; Kranjac et al., 2012), novel object recognition 

(Miwa et al., 2011) and spatial memory tests (Shaw et al., 2001; Sparkman et al., 2005b) as 

well as exacerbating memory deficits in a mouse model of delirium (Field et al., 2012; 

Griffin et al., 2013).   Whilst not the focus of the present study, one could speculate that 

PAR2 deletion may also impair LPS-induced cognitive deficits and indeed this warrants 

further investigation.  

4.2. Neuroinflammatory conditions do not result in increased PAR2 expression.   

We have shown a role for PAR2 in LPS-induced sickness behaviour, hence we sought to 

determine whether PAR2 expression was up-regulated during LPS-induced sickness 

behaviour.  Our data indicates that PAR2 mRNA expression remains unaltered following 

LPS injection both acutely and after 24 hrs thus suggesting that changes in PAR2 expression 

do not account for the changes in sickness behaviour observed in PAR2-/- mice.  Our findings 

are in contrast to a number of studies that have shown that LPS as well as IL-1ȕ and TNFĮ 

can lead to increased PAR2 expression in a variety of preparations (Hamilton et al., 2001; 

Morello et al., 2005; Ritchie et al., 2007).  However, given increased PAR2 expression in 

these studies was observed in in vitro preparations rather than in vivo as per the current study, 

direct comparisons are difficult.  Thus our data implies that activation of PAR2 per se 

accounts for the role of PAR2 in sickness behaviour but the exact identity of the PAR2 

activator(s) remains to be determined with several potential candidates and mechanisms by 

which this may occur outlined above.  

4.3. PAR2 does not contribute to behaviour under normal conditions. 

We have recently shown that PAR2 activation indirectly modulates hippocampal neuronal 

excitability and synaptic transmission via astrocytic activation (Gan et al., 2011). However, 

whether PAR2 contributes to CNS function and behaviour under normal conditions is 
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unknown.  Hence we utilised PAR2-/- mice to investigate its contribution to behaviour using 

standard tests for locomotor activity, anxiety-like behaviour, spatial memory and anhedonic-

like behaviour.  Our data reveals that PAR2 does not contribute to behavioural characteristics 

associated with these tests as behaviour in PAR2-/- mice was not altered in the OFT, EPM, 

MWM or SPT when compared to PAR2+/+ controls.  Whether an endogenous PAR2 activator 

released from resident cells present within the CNS remains to be elucidated with several 

candidates being proposed including mast cell tryptase, trypsinogen IV and kallikreins 

(Steinhoff et al., 2000; Noorbakhsh et al. 2005, 2006; Hollenberg et al., 2008) but our data 

indicates that PAR2 does not contribute to these behavioural paradigms in the normal healthy 

brain.  Similar findings have been reported for another member of the PAR family, PAR1, 

with behaviour in PAR1-/- mice being unaltered in tests of locomotor activity and anxiety-like 

behaviour.  However, PAR1-/- mice displayed deficits in emotionally motivated behavioural 

learning when examined using the passive avoidance task and in cued fear conditioning 

(Almonte et al., 2007). In addition, a recent study has revealed that a shift in G-protein 

signalling is a novel mechanism by which PAR1 modulates emotionally motivated 

behavioural learning in the amygdala (Bourgognon et al., 2013). The role of PAR1 has been 

further implicated in learning and memory with recent studies highlighting deficits in 

hippocampal-dependent learning and synaptic plasticity in PAR1-/- mice compared to their 

littermate controls (Almonte et al., 2013). These findings indicate that PAR1 and PAR2 are 

not involved in locomotor activity and anxiety-like behaviour but implicate PAR1 in learning 

and memory. No deficits were apparent in PAR2-/- mice in the MWM, suggesting no role in 

spatial memory but whether PAR2 contributes to emotionally motivated behavioural learning 

remains to be elucidated and is beyond the scope of this study. 
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4.4. Conclusions 

In conclusion, we have found that PAR2 contributes to the onset and maintenance of LPS-

induced sickness behaviour but does not contribute to locomotor, anxiety-like behaviour and 

spatial memory under normal healthy conditions. We suggest that a change in PAR2 

expression within the CNS does not underlie our observations in sickness behaviour and is 

not evident under chronic inflammatory conditions such as obesity and AD.  Further work is 

required to fully elucidate the mechanisms and signalling pathways underlying the role of 

PAR2 in sickness behaviour and to determine whether PAR2 plays a significant role in other 

conditions where changes in the inflammatory environment are observed. 
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Figure legends 

Figure 1. PAR2 contributes to the onset and maintenance of LPS-induced sickness 

behaviour. PAR2-/- mice recovered significantly more quickly from LPS-induced 

behavioural deficits compared to both PAR2+/+ as shown by A) an increased distance moved 

at 24 and 48 hrs post LPS injection and B) increased entries into the centre square 24 hrs post 

LPS injection. # = P<0.05 vs vehicle, * = P<0.05 vs PAR2+/+. N≥7 for all mice. 

Figure 2. Induction of anhedonia is delayed in PAR2
-/-

 mice following LPS injection.  A) 

Sucrose preference and B) fluid intake are similar in all 3 genotypes tested in the SPT.    C) 

Anhedonia induction is delayed in PAR2-/- mice compared to PAR2+/+ and PAR2+/- mice as 

shown by sucrose preference being maintained in the first 2 hrs post LPS injection. * = 

P<0.05 vs PAR2+/-. N≥7 for all mice. 

Figure 3. Food intake and body weight changes are reduced following LPS injection. A) 

Food intake recovers more quickly in PAR2+/- mice compared to PAR2+/+ controls at 48h post 

LPS injection with a trend towards a recovery seen in PAR2-/- mice. B) Body weight recovers 

more quickly in PAR2-/- mice compared to PAR2+/+ controls at 48 and 72h post LPS 

injection. # = P<0.05 vs vehicle, * = P<0.05 vs PAR2+/+. N≥7 for all mice.     

Figure 4. PAR2 mRNA expression remains unchanged in conditions associated with 

neuroinflammation. A) PAR2 mRNA levels are unaltered but IL-1ȕ and TNF-Į mRNA 

levels are increased 2 hours post injection in all 3 brain regions examined. B) PAR2 mRNA 

levels are unchanged 24 hours post LPS injection but elevated IL-1ȕ and TNF-Į mRNA 

levels are maintained in the hypothalamus.  * = P<0.05 vs control, ** = P<0.01 vs control, 

*** = P<0.001 vs control, n≥4 for all tissue tested. 
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Figure 5. PAR2 does not contribute to locomotor activity and anxiety-like behaviour.  

A-C) No significant differences were observed on the total distance moved and entries into 

the centre square between all 3 PAR2 genotypes tested in the OFT. However, PAR2+/- mice 

spent significantly more time in the centre square compared to both PAR2+/+ and PAR2-/- 

mice.  D-F) No changes in performance were observed for time in open arms, open arm 

entries or total arm entries for all 3 genotypes tested in the EPM. ** = P<0.01 vs both 

PAR2+/+ and PAR2-/-. N=16 for all genotypes.  

Figure 6. PAR2 deletion does not affect performance in a spatial reference memory 

task. No difference in performance was observed for all 3 genotypes in the MWM as gaged 

by A) latency to locate the platform, B) distance travelled to locate the platform and C) time 

spent in the target vs opposite quadrant. *** = P<0.001 vs target quadrant. N=16 for all 

genotypes. 
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