347 research outputs found

    The Value of Bt Corn in Southwest Kansas: A Monte Carlo Simulation Approach

    Get PDF
    While most Corn Belt farmers consider planting Bt corn to control European corn borer, southwestern Kansas farmers must also take into account an array of other insect pests, including corn rootworm, spider mites, and southwestern corn borer. This research uses a decision analysis framework to estimate the expected economic value of Bt corn in southwest Kansas. Mean per acre Bt values ranged from 12.49to12.49 to 34.60, well above the technology fee assumed to be 14perunit,or14 per unit, or 5.25 per acre at a seeding rate of 30,000 seeds per acre. The minimum value over all scenarios was $8.69 per acre. Using Monte Carlo simulation, it was shown that European and southwestern corn borer infestation probabilities, expected corn price, and expected pest-free yields are important determinants of the value of Bt corn.Bt corn, decision analysis, European corn borer, integrated pest management, Monte Carlo simulation, southwestern corn borer, Crop Production/Industries,

    Oil-Soluble Dyes Incorporated in Meridic Diet of \u3ci\u3eDiatraea grandiosella\u3c/i\u3e (Lepidoptera: Crambidae) as Markers for Adult Dispersal Studies

    Get PDF
    Mark-release-recapture experiments to study insect dispersal require the release of marked insects that can be easily identified among feral conspecifics. Oil-soluble dyes have been used successfully to mark various insect species. Two oil-soluble dyes, Sudan Red 7B (C.I. 26050) and Sudan Blue 670 (C.I. 61554), were added to diet of the southwestern corn borer, Diatraea grandiosella Dyar, and evaluated against an untreated control diet. Survival, diet consumption, larval and pupal weight, development time, fecundity, longevity, and dry weight of the adults were measured. Adults reared on the three diets were also tested for mating success. Some minor effects were observed for southwestern corn borers reared on the marked diets. Eggs, larvae, pupae, and adults were all reliably marked and readily identifiable. Adults retained color for their entire life span. Adults from each diet mated successfully with adults from the other diets. F1 progeny from the different mating combinations survived to the second instar but tended to lose the marker after 3-4 d on untreated diet. Both Sudan Red 7B and Sudan Blue 670 can be used to mark southwestern corn borer adults and thus should be useful for mark-release-recapture dispersal studies. The dyes will also be useful for short-term studies with marked larvae and oviposition behavior

    Dispersal of Adult \u3ci\u3eDiatraea grandiosella\u3c/i\u3e (Lepidoptera: Crambidae) and Its Implications for Corn Borer Resistance Management in \u3ci\u3eBacillus thuringiensis\u3c/i\u3e Maize

    Get PDF
    Dispersal of the southwestern corn borer, Diatraea grandiosella Dyar, was examined by release and recapture of dye-marked adults and by capture of feral adults in and around 50-ha center pivot irrigated fields of Bacillus thuringiensis (Bt) maize. Pheromone and blacklight traps were used to capture the adults. In 1999, 2000, and 2001, a total of 177, 602, and 1,292 marked males, and 87, 231, and 1,045 marked females were released in four irrigated Bt maize fields, respectively. Recapture beyond release point was 2.13, 6.17, 3.16, and 17.91% for males and 0, 0, 2.23, and 4.18% for females in the four fields, respectively. One male was recaptured over native vegetation outside the field perimeter, and one was caught in a neighboring maize field, 457 m from the release point. An exponential decay function explained recapture of marked adults across the dispersal distance. More than 90% of adults were recaptured within 300 m of the release point. Large numbers of feral adults were captured throughout the study fields and over native vegetation between fields. The feral adult dispersal could be described with a linear model. Virgin females (38% marked and 14% feral) were captured throughout the study fields. The recapture of marked insects suggests that the dispersal was limited. However, capture of feral adults throughout Bt maize fields indicates that the actual dispersal may be more extensive than indicated by recapture of marked adults. Potential refuge sources for the feral adults were 587-1,387 m from the edge of the fields. There seems to be some dispersal of D. grandiosella from the nontransgenic β€œrefuge” fields into the transgenic fields, which may allow for some genetic mixing of the Bt-resistant and -susceptible insects to help suppress potential evolution of pest resistance to transgenic maize. However, it is not clear whether the dispersal recorded in this study is sufficient to support the current resistance management strategy for corn borers

    Intrinsic neuronal dynamics predict distinct functional roles during working memory

    Get PDF
    Working memory (WM) is characterized by the ability to maintain stable representations over time; however, neural activity associated with WM maintenance can be highly dynamic. We explore whether complex population coding dynamics during WM relate to the intrinsic temporal properties of single neurons in lateral prefrontal cortex (lPFC), the frontal eye fields (FEF), and lateral intraparietal cortex (LIP) of two monkeys (Macaca mulatta). We find that cells with short timescales carry memory information relatively early during memory encoding in lPFC; whereas long-timescale cells play a greater role later during processing, dominating coding in the delay period. We also observe a link between functional connectivity at rest and the intrinsic timescale in FEF and LIP. Our results indicate that individual differences in the temporal processing capacity predict complex neuronal dynamics during WM, ranging from rapid dynamic encoding of stimuli to slower, but stable, maintenance of mnemonic information.Biotechnology and Biological Sciences Research Council (Great Britain) (BB/M010732/1)United States. Office of Naval Research (N00014-14-1-0681)National Institute of Mental Health (U.S.) (R00MH092715)National Institute of Mental Health (U.S.) (R37MH087027)Massachusetts Institute of Technology. Picower Innovation FundUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (grant N00014-16-1-2832)National Institute for Health Research (Great Britain). Wellcome Trust (203139/Z/16/Z

    Rubidium Chloride and Cesium Chloride Sprayed on Maize Plants and Evaluated for Marking \u3ci\u3eDiatraea grandiosella\u3c/i\u3e (Lepidoptera: Crambidae) in Mark–Recapture Dispersal Studies

    Get PDF
    Experiments were undertaken to determine the potential for using rubidium chloride (RbCl) or cesium chloride (CsCl) to mark southwestern corn borer, Diatraea grandiosella Dyar, for use in applied ecological studies. Maize, Zea mays L., plants were sprayed with aqueous solutions of RbCl or CsCl at rates of 100, 1000, or 10,000 Β΅g/g and inoculated with D. grandiosella neonates. Rubidium and cesium were successfully absorbed and translocated in maize plants. There were only a few minor effects of the treatment on maize or on southwestern corn borers.Rb and Cs were detected in plants, but not in insects, by using Flame atomic absorption spectrophotometry. Graphite furnace-atomic absorption spectrophotometry (GF-AAS) and neutron activation analysis (NAA) allowed identification of Rb and Cs in adults. Rb and Cs were detected by GF-AAS in feral unmarked adults, and they contained higher levels of Rb than Cs. Males and females contained similar amounts of Rb, but Cs levels were higher in males than in females. Adults recovered from field maize treated with 1000 Β΅g/g Cs had higher levels of Cs than did those from untreated plants. Using NAA, neither Rb nor Cs was detected in adults recovered from greenhouse-grown untreated maize. Males and females recovered from maize treated with 1000 Β΅g/g RbCl and CsCl contained similar amounts of Rb, but females contained more Rb than Cs. We conclude that application of 1000 Β΅g/g RbCl or CsCl on plants is effective in marking adults of D. grandiosella with Rb or Cs and would be useful for mark-recapture dispersal studies

    Overt is no better than covert when rehearsing visuo-spatial information in working memory

    Get PDF
    In the present study, we examined whether eye movements facilitate retention of visuo-spatial information in working memory. In two experiments, participants memorised the sequence of the spatial locations of six digits across a retention interval. In some conditions, participants were free to move their eyes during the retention interval, but in others they either were required to remain fixated or were instructed to move their eyes exclusively to a selection of the memorised locations. Memory performance was no better when participants were free to move their eyes during the memory interval than when they fixated a single location. Furthermore, the results demonstrated a primacy effect in the eye movement behaviour that corresponded with the memory performance. We conclude that overt eye movements do not provide a benefit over covert attention for rehearsing visuo-spatial information in working memory

    Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    Get PDF
    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory

    Representation of Multiple, Independent Categories in the Primate Prefrontal Cortex

    Get PDF
    Neural correlates of visual categories have been previously identified in the prefrontal cortex (PFC). However, whether individual neurons can represent multiple categories is unknown. Varying degrees of generalization versus specialization of neurons in the PFC have been theorized. We recorded from lateral PFC neural activity while monkeys switched between two different and independent categorical distinctions (Cats versus Dogs, Sports Cars versus Sedans). We found that many PFC neurons reflected both categorical distinctions. In fact, these multitasking neurons had the strongest category effects. This stands in contrast to our lab's recent report that monkeys switching between competing categorical distinctions (applied to the same stimulus set) showed independent representations. We suggest that cognitive demands determine whether PFC neurons function as category β€œmultitaskers.”National Institute of Mental Health (U.S.) (Grant 2R01MH065252-06

    Pre-Stimulus Activity Predicts the Winner of Top-Down vs. Bottom-Up Attentional Selection

    Get PDF
    Our ability to process visual information is fundamentally limited. This leads to competition between sensory information that is relevant for top-down goals and sensory information that is perceptually salient, but task-irrelevant. The aim of the present study was to identify, from EEG recordings, pre-stimulus and pre-saccadic neural activity that could predict whether top-down or bottom-up processes would win the competition for attention on a trial-by-trial basis. We employed a visual search paradigm in which a lateralized low contrast target appeared alone, or with a low (i.e., non-salient) or high contrast (i.e., salient) distractor. Trials with a salient distractor were of primary interest due to the strong competition between top-down knowledge and bottom-up attentional capture. Our results demonstrated that 1) in the 1-sec pre-stimulus interval, frontal alpha (8–12 Hz) activity was higher on trials where the salient distractor captured attention and the first saccade (bottom-up win); and 2) there was a transient pre-saccadic increase in posterior-parietal alpha (7–8 Hz) activity on trials where the first saccade went to the target (top-down win). We propose that the high frontal alpha reflects a disengagement of attentional control whereas the transient posterior alpha time-locked to the saccade indicates sensory inhibition of the salient distractor and suppression of bottom-up oculomotor capture
    • …
    corecore