9,285 research outputs found
Local simulation of singlet statistics for restricted set of measurement
The essence of Bell's theorem is that, in general, quantum statistics cannot
be reproduced by local hidden variable (LHV) model. This impossibility is
strongly manifested while analyzing the singlet state statistics for Bell-CHSH
violations. In this work, we provide various subsets of two outcome POVMs for
which a local hidden variable model can be constructed for singlet state.Comment: 2 column, 5 pages, 4 figures, new references, abstract modified,
accepted in JP
A dilemma in representing observables in quantum mechanics
There are self-adjoint operators which determine both spectral and
semispectral measures. These measures have very different commutativity and
covariance properties. This fact poses a serious question on the physical
meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page
The 50-horsepower solar-powered irrigation facility located near Gila Bend, Arizona
The 50 horsepower solar powered irrigation facility near Gila Bend, Arizona which includes a Rankine cycle demonstrates the technical feasibility of solar powered pumping. The design of a facility specifically for the irrigation farmer using the technology that has been developed over the last four years is proposed
Unsharp Quantum Reality
The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way
Tumbleweeds and airborne gravitational noise sources for LIGO
Gravitational-wave detectors are sensitive not only to astrophysical
gravitational waves, but also to the fluctuating Newtonian gravitational forces
of moving masses in the ground and air around the detector. This paper studies
the gravitational effects of density perturbations in the atmosphere, and from
massive airborne objects near the detector. These effects were previously
considered by Saulson; in this paper I revisit these phenomena, considering
transient atmospheric shocks, and the effects of sound waves or objects
colliding with the ground or buildings around the test masses. I also consider
temperature perturbations advected past the detector as a source of
gravitational noise. I find that the gravitational noise background is below
the expected noise floor even of advanced interferometric detectors, although
only by an order of magnitude for temperature perturbations carried along
turbulent streamlines. I also find that transient shockwaves in the atmosphere
could potentially produce large spurious signals, with signal-to-noise ratios
in the hundreds in an advanced interferometric detector. These signals could be
vetoed by means of acoustic sensors outside of the buildings. Massive
wind-borne objects such as tumbleweeds could also produce gravitational signals
with signal-to-noise ratios in the hundreds if they collide with the
interferometer buildings, so it may be necessary to build fences preventing
such objects from approaching within about 30m of the test masses.Comment: 15 pages, 10 PostScript figures, uses REVTeX4.cls and epsfig.st
Low-density, one-dimensional quantum gases in a split trap
We investigate degenerate quantum gases in one dimension trapped in a
harmonic potential that is split in the centre by a pointlike potential. Since
the single particle eigenfunctions of such a system are known for all strengths
of the central potential, the dynamics for non-interacting fermionic gases and
low-density, strongly interacting bosonic gases can be investigated exactly
using the Fermi-Bose mapping theorem. We calculate the exact many-particle
ground-state wave-functions for both particle species, investigate soliton-like
solutions, and compare the bosonic system to the well-known physics of Bose
gases described by the Gross-Pitaevskii equation. We also address the
experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure
The norm-1-property of a quantum observable
A normalized positive operator measure has the
norm-1-property if \no{E(X)}=1 whenever . This property reflects
the fact that the measurement outcome probabilities for the values of such
observables can be made arbitrary close to one with suitable state
preparations. Some general implications of the norm-1-property are
investigated. As case studies, localization observables, phase observables, and
phase space observables are considered.Comment: 14 page
Binding between two-component bosons in one dimension
We investigate the ground state of one-dimensional few-atom Bose-Bose
mixtures under harmonic confinement throughout the crossover from weak to
strong inter-species attraction. The calculations are based on the numerically
exact multi-configurational time-dependent Hartree method. For repulsive
components we detail the condition for the formation of a molecular
Tonks-Girardeau gas in the regime of intermediate inter-species interactions,
and the formation of a molecular condensate for stronger coupling. Beyond a
critical inter-species attraction, the system collapses to an overall bound
state. Different pathways emerge for unequal particle numbers and intra-species
interactions. In particular, for mixtures with one attractive component, this
species can be viewed as an effective potential dimple in the trap center for
the other, repulsive component.Comment: 10 pages, 10 figure
Informationally complete measurements and groups representation
Informationally complete measurements on a quantum system allow to estimate
the expectation value of any arbitrary operator by just averaging functions of
the experimental outcomes. We show that such kind of measurements can be
achieved through positive-operator valued measures (POVM's) related to unitary
irreducible representations of a group on the Hilbert space of the system. With
the help of frame theory we provide a constructive way to evaluate the
data-processing function for arbitrary operators.Comment: 9 pages, no figures, IOP style. Some new references adde
Balancing efficiencies by squeezing in realistic eight-port homodyne detection
We address measurements of covariant phase observables (CPOs) by means of
realistic eight-port homodyne detectors. We do not assume equal quantum
efficiencies for the four photodetectors and investigate the conditions under
which the measurement of a CPO may be achieved. We show that balancing the
efficiencies using an additional beam splitter allows us to achieve a CPO at
the price of reducing the overall effective efficiency, and prove that it is
never a smearing of the ideal CPO achievable with unit quantum efficiency. An
alternative strategy based on employing a squeezed vacuum as a parameter field
is also suggested, which allows one to increase the overall efficiency in
comparison to the passive case using only a moderate amount of squeezing. Both
methods are suitable for implementantion with current technology.Comment: 8 pages, 5 figures, revised versio
- …
