Gravitational-wave detectors are sensitive not only to astrophysical
gravitational waves, but also to the fluctuating Newtonian gravitational forces
of moving masses in the ground and air around the detector. This paper studies
the gravitational effects of density perturbations in the atmosphere, and from
massive airborne objects near the detector. These effects were previously
considered by Saulson; in this paper I revisit these phenomena, considering
transient atmospheric shocks, and the effects of sound waves or objects
colliding with the ground or buildings around the test masses. I also consider
temperature perturbations advected past the detector as a source of
gravitational noise. I find that the gravitational noise background is below
the expected noise floor even of advanced interferometric detectors, although
only by an order of magnitude for temperature perturbations carried along
turbulent streamlines. I also find that transient shockwaves in the atmosphere
could potentially produce large spurious signals, with signal-to-noise ratios
in the hundreds in an advanced interferometric detector. These signals could be
vetoed by means of acoustic sensors outside of the buildings. Massive
wind-borne objects such as tumbleweeds could also produce gravitational signals
with signal-to-noise ratios in the hundreds if they collide with the
interferometer buildings, so it may be necessary to build fences preventing
such objects from approaching within about 30m of the test masses.Comment: 15 pages, 10 PostScript figures, uses REVTeX4.cls and epsfig.st