22 research outputs found

    A Brief History of OLEDs—Emitter Development and Industry Milestones

    Get PDF
    Organic light‐emitting diodes (OLEDs) have come a long way ever since their first introduction in 1987 at Eastman Kodak. Today, OLEDs are especially valued in the display and lighting industry for their promising features. As one of the research fields that equally inspires and drives development in academia and industry, OLED device technology has continuously evolved over more than 30 years. OLED devices have come forward based on three generations of emitter materials relying on fluorescence (first generation), phosphorescence (second generation), and thermally activated delayed fluorescence (third generation). Furthermore, research in academia and industry toward the fourth generation of OLEDs is in progress. Excerpts from the history of green, orange‐red, and blue OLED emitter development on the side of academia and milestones achieved by key players in the industry are included in this report

    Various Structural Design Modifications : para-Substituted Diphenylphosphinopyridine Bridged Cu(I) Complexes in Organic Light-Emitting Diodes

    Get PDF
    The well-known system of dinuclear Cu(I) complexes bridged by 2-(diphenylphosphino)pyridine (PyrPhos) derivatives Cu2X2L3 and Cu2X2LP2 (L = bridging ligand, P = ancillary ligand) goes along with endless variation options for tunability. In this work, the influence of substituents and modifications on the phosphine moiety of the NP-bridging ligand was investigated. In previous studies, the location of the lowest unoccupied molecular orbital (LUMO) of the copper complexes of the PyrPhos family was found to be located on the NP-bridging ligand and enabled color tuning in the whole visible spectrum. A multitude of dinuclear Cu(I) complexes based on the triple methylated 2- (bis (4-methylphenyl)phosphino)-4-methylpyridine (Cu-1b-H, Cu-1b-MeO, and Cu-1b-F) up to complexes bearing 2-(bis(4-fluorophenyl)phosphino)pyridine (Cu-6a-H) with electron-withdrawing fluorine atoms over many other variations on the NP-bridging ligands were synthesized. Almost all copper complexes were confirmed via single crystal X-ray diffraction analysis. Besides theoretical TDDFT-studies of the electronic properties and photophysical measurements, the majority of the phosphinomodified Cu(I) complexes was tested in solution-processed organic light-emitting diodes (OLEDs) with different heterostructure variations. The best results of the OLED devices were obtained with copper emitter Cu-lb-H in a stack architecture of ITO/PEDOT-PSS (50 nm)/poly-TPD (15 nm)/20 wt % Cu(I) emitter:CBP:TcTA(7:3) (45 nm)/TPBi (30 nm)/LiF(1 nm)/Al (>100 nm) with a high brightness of 5900 Cd/m(2) and a good current efficiency of 3.79 Cd/A.Peer reviewe

    Investigation of Luminescent Triplet States in Tetranuclear Cu-I Complexes : Thermochromism and Structural Characterization

    Get PDF
    To develop new and flexible Cu-I containing luminescent substances, we extend our previous investigations on two metal-centered species to four metal-centered complexes. These complexes could be a basis for designing new organic light-emitting diode (OLED) relevant species. Both the synthesis and in-depth spectroscopic analysis, combined with high-level theoretical calculations are presented on a series of tetranuclear Cu-I complexes with a halide containing Cu4X4 core (X=iodide, bromide or chloride) and two 2-(diphenylphosphino)pyridine bridging ligands with a methyl group in para (4-Me) or ortho (6-Me) position of the pyridine ring. The structure of the electronic ground state is characterized by X-ray diffraction, NMR, and IR spectroscopy with the support of theoretical calculations. In contrast to the para system, the complexes with ortho-substituted bridging ligands show a remarkable and reversible temperature-dependent dual phosphorescence. Here, we combine for the first time the luminescence thermochromism with time-resolved FTIR spectroscopy. Thus, we receive experimental data on the structures of the two triplet states involved in the luminescence thermochromism. The transient IR spectra of the underlying triplet metal/halide-to-ligand charge transfer (M-3/XLCT) and cluster-centered ((CC)-C-3) states were obtained and interpreted by comparison with calculated vibrational spectra. The systematic and significant dependence of the bridging halides was analyzed.Peer reviewe

    Highly soluble fluorine containing Cu(i) AlkylPyrPhos TADF complexes

    Get PDF
    Luminescent Cu(i) AlkylPyrPhos complexes with a butterfly-shaped Cu2I2 core and halogen containing ancillary ligands, with a special focus on fluorine, have been investigated in this study. These complexes show extremely high solubilities and a remarkable (photo)chemical stability in a series of solvents. A tunable emission resulting from thermally activated delayed fluorescence with high quantum yields was determined by luminescence and lifetime investigations in solvents and solids. Structures of the electronic ground states were analyzed by single crystal X-ray analysis. The structure of the lowest excited triplet state was determined by transient FTIR spectroscopy, in combination with quantum chemical calculations. With the obtained range of compounds we address the key requirement for the production of organic light emitting diodes based on solution processing.Peer reviewe

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    SARS-CoV-2 Infection During Induction Chemotherapy in a Child With High-risk T-Cell Acute Lymphoblastic Leukemia (T-ALL).

    Get PDF
    The clinical course of SARS-CoV-2 infection (COVID-19) in children with hematologic malignancies is unclear. We describe the diagnosis, treatment and outcome of a 4-year-old boy with high-risk acute lymphoblastic leukemia and COVID-19. Regardless of immunosuppressive induction chemotherapy his symptoms remained moderate. He received only supportive treatment. Seroconversion occurred in a similar period as in immunocompetent adults. Despite prolonged myelosuppression he did neither acquire secondary infections nor did the treatment delay caused by the infection have a measurable negative impact on the residual disease of acute lymphoblastic leukemia. Intriguingly, residual leukemia even decreased even though he did not receive any antileukemic therapy
    corecore