10,497 research outputs found
Approximating incompatible von Neumann measurements simultaneously
We study the problem of performing orthogonal qubit measurements
simultaneously. Since these measurements are incompatible, one has to accept
additional imprecision. An optimal joint measurement is the one with the least
possible imprecision. All earlier considerations of this problem have concerned
only joint measurability of observables, while in this work we also take into
account conditional state transformations (i.e., instruments). We characterize
the optimal joint instrument for two orthogonal von Neumann instruments as
being the Luders instrument of the optimal joint observable.Comment: 9 pages, 4 figures; v2 has a more extensive introduction + other
minor correction
The structure of classical extensions of quantum probability theory
On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed
Quantum Mechanics as a Framework for Dealing with Uncertainty
Quantum uncertainty is described here in two guises: indeterminacy with its
concomitant indeterminism of measurement outcomes, and fuzziness, or
unsharpness. Both features were long seen as obstructions of experimental
possibilities that were available in the realm of classical physics. The birth
of quantum information science was due to the realization that such
obstructions can be turned into powerful resources. Here we review how the
utilization of quantum fuzziness makes room for a notion of approximate joint
measurement of noncommuting observables. We also show how from a classical
perspective quantum uncertainty is due to a limitation of measurability
reflected in a fuzzy event structure -- all quantum events are fundamentally
unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku
2009
Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glasses were prepared by cooling the melt with a rate of about 10 K/s and investigated with respect to their chemical and structural homogeneity by atom probe field ion microscopy and transmission electron microscopy. The measurements on these slowly cooled samples reveal that the alloy exhibits phase separation in the undercooled liquid state. Significant composition fluctuations are found in the Be and Zr concentration but not in the Ti, Cu, and Ni concentration. The decomposed microstructure is compared with the microstructure obtained upon primary crystallization, suggesting that the nucleation during primary crystallization of this bulk glass former is triggered by the preceding diffusion controlled decomposition in the undercooled liquid state
Universal joint-measurement uncertainty relation for error bars
We formulate and prove a new, universally valid uncertainty relation for the necessary error bar widths in any approximate joint measurement of position and momentum
A dilemma in representing observables in quantum mechanics
There are self-adjoint operators which determine both spectral and
semispectral measures. These measures have very different commutativity and
covariance properties. This fact poses a serious question on the physical
meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page
Unsharp Quantum Reality
The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way
The Dynamic Transition of Protein Hydration Water
Thin layers of water on biomolecular and other nanostructured surfaces can be
supercooled to temperatures not accessible with bulk water. Chen et al. [PNAS
103, 9012 (2006)] suggested that anomalies near 220 K observed by quasi-elastic
neutron scattering can be explained by a hidden critical point of bulk water.
Based on more sensitive measurements of water on perdeuterated phycocyanin,
using the new neutron backscattering spectrometer SPHERES, and an improved data
analysis, we present results that show no sign of such a fragile-to-strong
transition. The inflection of the elastic intensity at 220 K has a dynamic
origin that is compatible with a calorimetric glass transition at 170 K. The
temperature dependence of the relaxation times is highly sensitive to data
evaluation; it can be brought into perfect agreement with the results of other
techniques, without any anomaly.Comment: 4 pages, 3 figures. Phys. Rev. Lett. (in press
Fast quasi-adiabatic dynamics
We work out the theory and applications of a fast quasi-adiabatic approach to
speed up slow adiabatic manipulations of quantum systems by driving a control
parameter as near to the adiabatic limit as possible over the entire protocol
duration. Specifically, we show that the population inversion in a two-level
system, the splitting and cotunneling of two-interacting bosons, and the
stirring of a Tonks-Girardeau gas on a ring to achieve mesoscopic
superpositions of many-body rotating and non-rotating states, can be
significantly speeded up.Comment: 5 pages, 6 figure
The conditions for quantum violation of macroscopic realism
Why do we not experience a violation of macroscopic realism in every-day
life? Normally, no violation can be seen either because of decoherence or the
restriction of coarse-grained measurements, transforming the time evolution of
any quantum state into a classical time evolution of a statistical mixture. We
find the sufficient condition for these classical evolutions for spin systems
under coarse-grained measurements. Then we demonstrate that there exist
"non-classical" Hamiltonians whose time evolution cannot be understood
classically, although at every instant of time the quantum spin state appears
as a classical mixture. We suggest that such Hamiltonians are unlikely to be
realized in nature because of their high computational complexity.Comment: 4 pages, 2 figures, revised version, journal reference adde
- …