99 research outputs found

    Parents report positive experiences about enrolling babies in a cord-related clinical trial before birth

    Get PDF
    Aim The aim of this study was to evaluate parents' perceptions when they were asked to enrol their unborn preterm infant in a randomised trial involving delayed cord clamping or cord milking. Methods The parents of 58 infants were asked to take part in a qualitative study using semi-structured interviews to provide feedback about how they felt about their infants being included in the research project. A total of 37 parents – 15 fathers and 22 mothers – agreed to take part. Results Parents were generally positive about their experiences of their baby taking part in the trial, but the findings raised some concerns about the validity of the consent obtained before delivery, as it was given in a hurry, and some participants had difficulty remembering that they had agreed to take part. Four themes were identified from the interviews: implications of taking part, reasons for enrolling infants, experiences of recruitment and suggestions for improvement. Conclusion Overall, the parents were positive about their baby taking part in the trial, but the consent process could be improved, by providing information about relevant trials earlier in the pregnancy or implementing continuous consent at key points in the trial

    Invariant Natural Killer T Cell Agonist Modulates Experimental Focal and Segmental Glomerulosclerosis

    Get PDF
    A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis (FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T (iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin(ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1α, IL-1β, IL-17, TNF-α, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-β analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-β could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-β, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-β through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management

    Evaluation of microbial diversity of the Zoological Park of São Paulo in order to obtain Polyhydroxyalkanoates producing bacteria

    No full text
    BV UNIFESP: Teses e dissertaçõe

    Dynamic positioning system based on computer vision and laser.

    No full text
    Nos últimos anos, tem se intensificado o desenvolvimento de novas tecnologias para serem aplicadas à veículos submersíveis não tripulados. Uma delas é a visão computacional, que tem o objetivo de extrair informações úteis das imagens captadas do ambiente, podendo ser utilizada como um sensor para o posicionamento do veículo, além de contribuir para o reconhecimento automático de objetos a serem inspecionados. A finalidade de um veículo submersível não tripulado é efetuar missões de inspeções ou pequenos reparos em estruturas submersas em meios oceânicos ou fluviais. Nessas operações, é importante que o veículo possua um controle autônomo, por meio de um sistema de posicionamento dinâmico, para facilitar a sua operação e garantir o sucesso da missão. Em função destas necessidades, este trabalho concentra-se no desenvolvimento de um sistema de visão computacional auxiliado por ponteiros de raio laser, que geram marcos visuais artificiais em ambientes não estruturados, possibilitando medir distâncias e ângulo de aproamento baseado no método da triangulação. Foram testados lasers com diferentes comprimentos de onda, em ambiente aéreo e subaquático, com diferentes índices de turbidez, nível de luminosidade e distância. Baseado nos resultados e utilizando o sistema de visão e laser como método de sensoriamento, foi projetado e implantado um sistema de posicionamento dinâmico para o plano horizontal, utilizando Filtro de Kalman. A avaliação do sistema de posicionamento dinâmico e do método de sensoriamento foi realizada por meio de simulação numérica e averiguação experimental, utilizando-se um modelo reduzido de um veículo de superfície no laboratório do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da Universidade de São Paulo. Os resultados experimentais indicaram a viabilidade da aplicação do método de sensoriamento baseado em visão computacional e laser para sistemas de posicionamento dinâmico, mostrando-se um método simples, confiável, ativo e independente.The development of new technologies to improve unmanned underwater vehicles has recently intensified. Computer vision, one such example, has the objective of extracting useful information from images captured in the environment; this information can facilitate vehicle positioning and the reconnaissance of objects to be inspected. Purposes of unmanned underwater vehicles include inspection missions and small repairs in underwater structures located in oceans or rivers. For these operations it is important for the vehicle to have an autonomous control system using dynamic positioning system to facilitate its operation and to guarantee the missions success. Given these necessities, this study concentrates on the development of a computer vision system supported by laser pointing devices that generate artificial landmarks in non-structured environments, facilitating distance and angle measurement based on the triangulation method. Lasers of different wavelengths were tested in air and underwater environments, where the latter had different indices of turbidity, levels of luminosity, and distance. Based on the results and utilizing the system of vision and laser as a sensor method, a dynamic positioning system for the horizontal plane has been created through the use of Extended Kalman Filter. The evaluation of this dynamic positioning system and of the sensor method was accomplished through numeric simulation and experimental checks using a reduced model of a surface vehicle, located in the University of São Paulos Department of Naval and Oceanic Engineering. The experimental results show that the application of the sensor method based on laser and computer vision for the dynamic positioning system is viable and proved to be an independent, active, reliable, and simple method

    Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Get PDF
    Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs) to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function.Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2)) or hypoxic (2% O(2)) conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM) had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist) had no affects on heart function, whereas DPCPX (A1AR-specific antagonist) had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/-) had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos.These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of embryonic hypoxia
    • …
    corecore