590 research outputs found

    A domain decomposition multiscale mixed method for flow in porous media based on Robin boundary conditions

    Get PDF
    In this work we propose a domain decomposition method based on Robin type boundary con- ditions that is suitable to solve the porous media equations on very large reservoirs. In order to reduce the algebraic systems to be solved to affordable sizes, a multiscale formulation is considered in which the coupling variables between subdomains, namely, pressures and normal fluxes, are seek in low dimen- sional spaces on the skeleton of the decomposition, while considering the permeability heterogeneities in the original fine grid for the local problems. In the new formulation, a non-dimensional parameter in the Robin condition is introduced such that we may transit smoothly from two well known formulations, namely, the Multiscale Mortar Mixed and the Multiscale Hybrid Mixed finite element methods. In the proposed formulation the interface spaces for pressure and fluxes can be selected independently. This has the potential to produce more accurate results by better accommodating local features of the exact solution near subdomain boundaries. Several numerical examples which exhibit highly heterogeneous permeability fields and channelized regions are solved with the new formulation and results compared to the aforementioned multiscale methods.Publicado en: Mecánica Computacional vol. XXXV, no. 17Facultad de Ingenierí

    A domain decomposition multiscale mixed method for flow in porous media based on Robin boundary conditions

    Get PDF
    In this work we propose a domain decomposition method based on Robin type boundary con- ditions that is suitable to solve the porous media equations on very large reservoirs. In order to reduce the algebraic systems to be solved to affordable sizes, a multiscale formulation is considered in which the coupling variables between subdomains, namely, pressures and normal fluxes, are seek in low dimen- sional spaces on the skeleton of the decomposition, while considering the permeability heterogeneities in the original fine grid for the local problems. In the new formulation, a non-dimensional parameter in the Robin condition is introduced such that we may transit smoothly from two well known formulations, namely, the Multiscale Mortar Mixed and the Multiscale Hybrid Mixed finite element methods. In the proposed formulation the interface spaces for pressure and fluxes can be selected independently. This has the potential to produce more accurate results by better accommodating local features of the exact solution near subdomain boundaries. Several numerical examples which exhibit highly heterogeneous permeability fields and channelized regions are solved with the new formulation and results compared to the aforementioned multiscale methods.Publicado en: Mecánica Computacional vol. XXXV, no. 17Facultad de Ingenierí

    Encuesta preliminar sobre influenza en ganado de carne

    Get PDF
    La influenza se ha convertido en la enfermedad más ampliamente difundida debido a los brotes producidos en Asia en las aves y su potencial zoonótico. No mucho se ha estudiado en el ganado vacuno (Pearson, 2002; Ducatez et al 2015); aves acuáticas de vida libre son el reservorio natural de los virus de influenza A y conviven con la ganadería de pastizal. La influenza aviar de alta patogenicidad (IAAP), causada por el virus de la influenza aviar subtipo H5N1/2 representa uno de los mayores problemas de salud de los animales. Ningún virus de este subtipo y linaje asiático se ha detectado en Sudamérica (Buscaglia, 2011). La vigilancia es esencial en la detección temprana y el posterior control de esta enfermedad. Debido a que los anticuerpos contra el virus de la influenza pueden persistir después de la propagación del virus a partir del animal infectado, las pruebas serológicas pueden proporcionar un método relativamente simple y barato para detectar la infección (Swayne et al. 2008).Facultad de Ciencias Veterinaria

    A domain decomposition multiscale mixed method for flow in porous media based on Robin boundary conditions

    Get PDF
    In this work we propose a domain decomposition method based on Robin type boundary con- ditions that is suitable to solve the porous media equations on very large reservoirs. In order to reduce the algebraic systems to be solved to affordable sizes, a multiscale formulation is considered in which the coupling variables between subdomains, namely, pressures and normal fluxes, are seek in low dimen- sional spaces on the skeleton of the decomposition, while considering the permeability heterogeneities in the original fine grid for the local problems. In the new formulation, a non-dimensional parameter in the Robin condition is introduced such that we may transit smoothly from two well known formulations, namely, the Multiscale Mortar Mixed and the Multiscale Hybrid Mixed finite element methods. In the proposed formulation the interface spaces for pressure and fluxes can be selected independently. This has the potential to produce more accurate results by better accommodating local features of the exact solution near subdomain boundaries. Several numerical examples which exhibit highly heterogeneous permeability fields and channelized regions are solved with the new formulation and results compared to the aforementioned multiscale methods.Publicado en: Mecánica Computacional vol. XXXV, no. 17Facultad de Ingenierí

    Towards a Universal Method for the Stable and Clean Functionalization of Inert Perfluoropolymer Nanoparticles : Exploiting Photopolymerizable Amphiphilic Diacetylenes

    Get PDF
    Highly fluorinated materials are being widely investigated due to a number of peculiar properties, which are potentially useful for various applications, including use as lubricants, anti-adhesive films, and substitutes for biological fluids for biomedical utilization. However, at present such potential is still poorly exploited. One of the major drawbacks that hampers the rapid development of nanoscale fluoro-hybrid devices is the remarkable inertness of perfluoropolymeric materials that lack reactive functionalities, as they do not offer any functional groups that can be employed to covalently anchor organic molecules on their surface. In this paper, a convenient method for the stable biofunctionalization of strongly unreactive perfluoropolymer nanoparticles (PnPs) is reported. PnPs are easily coated with newly synthesized asymmetric diacetylenic monomer compounds (ADMs), thanks to PnP's high propensity to interact with hydrophobic moieties. Once monomerically adsorbed onto PnPs, such suitably designed ADMs enable the formation of a robust polymeric shell around the perfluoroelastomer core via a clean UV-promoted localized photopolymerization. Given the peculiar optical characteristics of PnPs, the coating of the particles can be monitored step by step using light scattering, which also allows estimation of the fraction of reacted monomers by competitive adsorption with smaller particles. The potential of this method for the biofunctionalization of PnPs is demonstrated with representative proteins and carbohydrates. Among them, the extension to avidin-biotin technology may broaden the scope and applicability of this strategy to potentially a large number of molecules of biomedical interest. Making the unreactive reactive: A smart method for the biofunctionalization of strongly inert perfluoropolymer nanoparticles (PnPs) is presented, using a stable coating with novel diacetylenic compounds followed by clean UV photopolymerization to generate reactive functionalities on the PnP surface. This method further allows fine tuning of the amount of conjugated biomolecules, which can be sensitively and straightforwardly quantified

    3D Multispectral Imaging for Cultural Heritage Preservation: The Case Study of a Wooden Sculpture of the Museo Egizio di Torino

    Get PDF
    Digitalization techniques, such as photogrammetry (PG), are attracting the interest of experts in the cultural heritage field, as they enable the creation of three-dimensional virtual replicas of historical artifacts with 2D digital images. Indeed, PG allows for acquiring data regarding the overall appearance of an artifact, its geometry, and its texture. Furthermore, among several image-based techniques exploited for the conservation of works of art, multispectral imaging (MSI) finds great application in the study of the materials of historical items, taking advantage of the different responses of materials when exposed to specific wavelengths. Despite their great usefulness, PG and MSI are often used as separate tools. Integrating radiometric and geometrical data can notably expand the information carried by a 3D model. Therefore, this paper presents a novel research methodology that enables the acquisition of multispectral 3D models, combining the outcomes of PG and MSI (Visible (VIS), Ultraviolet-induced Visible Luminescence (UVL), Ultraviolet-Reflected (UVR), and Ultraviolet-Reflected False Color (UVR-FC) imaging) in a single coordinate system, using an affordable tunable set-up and open-source software. The approach has been employed for the study of two wooden artifacts from the Museo Egizio di Torino to investigate the materials present on the surface and provide information that could support the design of suitable conservation treatments
    • …
    corecore