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Abstract

Current magnetic head sliders and other micromechanisms involve gas lubrication flows with gap thicknesses in the nanome-
ter range and stepped shapes fabricated by lithographic methods. In mechanical simulations, rarefaction effects are accounte
for by models that propose Poiseuille flow factors which exhibit singularities as the pressure tends totzeroloithis Note
we show that these models are indeed mathematically well-posed, even in the case of discontinuous gap thickness functions.
Our results cover popular models that were not previously analyzed in the literature, such as the Fukui—-Kaneko model and the
second-order model, among othéTs cite thisarticle: G. Buscaglia et al., C. R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

A propos de modeéles de lubrification hydrodynamique a I'échelle nanométriqueActuellement, de nombreux microdis-
positifs tels que les tétes de lecture magnétiques mettent en oeuvre des écoulements lubrifiés compressibles d'une épaisseur
film a I'échelle nanométrique. Leurs géométries, obtenues par des méthodes lithographiques, sont pratiquement discontinues
Dans les simulations, les effets de raréfaction sont incorporés dans des modeéles, couramment utilisés en lubrification (modéle
de Fukui—-Kaneko, modéle de deuxiéme ordre, etc.) qui font intervenir les facteurs de Poiseuille qui deviennent singuliers quand
la pression tend vers zero ou vefrso. Dans cette Note nous montrons que ces modeles sont mathématiquement bien posés,
méme avec des fonctions d'épaisseur discontinPas. citer cet article: G. Buscaglia et al., C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Several current technologies involve lubrication flows of gases with ultra-low gap thicknesses of a few nanome-
ters. Typical examples are rigid disks used for magnetic storage and micromechanisms such as silicon accelerome
ters. Models for these flows are necessarily based on the kinetic theory of gases, so as to account for compressibility
and rarefaction effects. Along the years, effective numerical methods have been proposed to deal with the resulting
equations (e.g., [1]) and they have been applied to static and dynamic analyses and more recently incorporated intc
optimal-design methodologies [2-5,1].

The mathematics of kinetic-based lubrication equations, on the other hand, has received little attention in the
literature. In the steady case the problem consists of a diffusion—advection-like elliptic equation (very similar to the
usual Reynolds equation) with Dirichlet boundary conditions, but classical results are not applicable because the
diffusion coefficient is a non-linear function of the pressure that divergestasds to either zero eroo. Modern
(lithographic) fabrication technologies add another mathematical difficulty which is not considered in previous
analyses of the Reynolds equation [6-9]: the gap thickness is practitstiyntinuous

The purpose of this Note is thus to bridge the gap between theory and state-of-the-art applications in the area of
rarefied compressible lubrication problems. We show below that the equations resulting from kinetic-based models
indeed lead to well-posed problems in what concerns existence, uniqueness and positivity of solutions. The results
are stated so as to encompass a wide family of models.

2. Governing equations

Let £2 be a regular bounded domainik?. In this work we consider the Generalized Reynolds Equation
V. (hz(x)Q(h(x)p)Vp) =V. (Ah(x)p) in 2 @
p=ps 0NIS2

in which p represents the (unknown) pressure in the fluid film between two given surfaces in relative motion,
h: 2 —]0, 4o0[ is the gap thickness : 10, oo[ — ]0, oo is the Poiseuille flow factorA e R? is the bearing
number andp, is a positive constant (typically the atmospheric pressure).
The Poiseuille-flow factop is assumed to satisfy the following hypothesis

Q is continuous on0, +oo[

Jo > 0suchthal(z) >« Vz >0 (HO)

Q(z) — +oo for z— 0 and forz — +o00
The most popular kinetic-based model, due to Fukui and Kaneko [10], the second- and third-order models (see,
e.g., [11] for a description, [2] for a recent application) and more recent variants such as that proposed by Peng et

al. [12] indeed satisfy (HO).
We impose very weak regularity requirements on the gap-thickness furgtiamely

he L®(R)

H1l
3h,, >0, hy > 0suchthah,, <h(x) <hy Vx e 2 (H1)

so that discontinuous shapes, such as those obtained by lithographic fabrication methods, are indeed considered.

3. Existence and uniqueness

We begin with two preliminary results.
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Proposition 3.1.For anys > 2 andu € H(}(Q) we have

L2<9)>

Proof. The demonstration is based upon the inequality [13, Theorem 7.10]

LP(Q))

foranyp €11, 2[ andu € H&(Q). Taking nows = 22_—1’p and using the Holder’s inequality the result follows.

ou
8x,'

2
S

lull s 2y < —=12217°| D
W

i=1

2

p o1
_ S;——=
lll L2p/2-p) (g2 2—p ﬁ(z

i=1

ou

8)61‘

Lemma 3.2.Let b € L™ (£2)2 be a vector field and € L>(£2) be a scalar function witfinf,co a(x) > 0. Let
u € H(£2) satisfy

V-@vVu)=V-b ing 2)
and let

wo = {x €2 ulx)> 0}
Assume thaiy is a nonempty set such thag C £2. Then the followind.*-estimate holds

% ”b”LjC(wo)
ao

u(x) < fora.e.x € wg

whereK =52-6-3/6-2 /[@Twith§ =2+ In24 /4In2+ (In2)2 anddp = infycn, @ (x).

Proof. The proof is adapted from of Kinderlehrer—Stampacchia [14, Theorem B.2 (page 63]>Fbwe define

£ = u—k ifu>k
~]0 ifu<k
and

Ak) = {x € 2: u(x) >k}

Takingé& as test function in the variational form of (2), sindék) C wg one gets the result following the same idea
asin [14, Theorem B.2 (page 63)] and using also Proposition 31.

Theorem 3.3.Let p, €10, p,[ andy, € 10, 1[ be such that

K|Alh
inf 0(s) > # 3)
SE[hm Vs Ps.hpt Pl hm(l — V)
and p* > p, andy* > 1 such that
. K|Alhyy*
inf 0(s) > 2||7M’/ @)
s€lhmp*,hpm p*y*] hm()/* - 1)

Problem(1) admits at least one solution satisfying

YeDx < p(X) <y*p* %)
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Proof. Notice first that the existence of;, y., p* andy* verifying (3) and (4) follows from hypothesis (HO) with
no monotonicity requirements of). To prove the existence gf we use Schauder’s fixed-point theorem. Let us
define the set

By ={u € L3(2); yips <u(x) <y*p* ae.ing2)
which is a closed subset a2 (£2). We introduce the operator
T:B, — HYQ)
defined byg = Tp, whereg is the solution of
/hz(x)Q(h(x)p)Vq -V = / Ah(x)p-Vv Yve Hol(.Q)

q € pa+ H}(R)
Existence and uniquenessgfollows from (HO) and (H1). We now introduce the truncation functtoiR — R
defined by
YeDx  If s < yups
O(s)=1s if yups <s <y*p* )
and we consider the operat®r B, — B, given by
(Sp)(x) = Q(q(x)) a.e.inf2

whereq = Tp. We show classically thaf admits a fixed point, denotefl Denotingg = T g, it remains to show
thatg (x) = g (x), that is, thaty, p,. < g(x) < y*p*. To show the first inequality let us takg. = {x € £2: ¢(x) <
p«}. Since p, < p, we also havev, C 2. If w, = ¢ the proof is finished, so that it remains to consider the
casew,, # . Let us seu = p, — ¢, which is positive orw,. Thenu € H1(£2) and satisfie§ - (h2Q(h§)Vu) =

—V - Ahq. The inequality of Lemma 3.2 thus applies with = w,. AS g(x) € [V« P«, P«] &.€. iNw,, we obtain

h2()Q(h(x)G(x)) = k% inf (06

s€lhm Vx P*th Px
and

|Ahg| < | Alhy ps
Lemma 3.2 and relation (3) then imply

|Alhp ps
2, INfselhy y pe i pel Q(5)

u(x) <K <(A—y)p. fora.ex e w,

or, equivalentlyp, — g < (1—y4) p« in w,, and we geyy > y, p, a.e. ins2 as claimed. To show the other inequality,
q(x) < y*p*, we proceed in a similar manner by taking = {x € £2: q(x) > p*}, u = ¢ — p*, and then use
Lemma 3.2 and relation (4).0

Remark 1. In the frequent case in which there existz2, 0 < z1 < z2, such thatQ is strictly decreasing if0, z1[
and strictly increasing ifiz2, +o0o[ we have the following bounds gn

p <px)<pt aexen
with

pPT = SUp yups«(ys) and p*= inf y*p*(y*)
Y+€10.1[ re>=1
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with
21 . KlAlhy
== f————<
o | Ty, S0
PEVI=N 1/ KlAhy \ .. K|Alhy
_Ql 2 if 2 > Q(Zl)
hm hg (1 —vy) ha (L—v4)
whereQI1 :[0(z1), +oo[ — 10, z1] denotes the inverse of the restriction®@fto 10, z1]; and
22 . K[Alhyy*
2 f———— <
e L Y- n <9
PUOT) L Klay KA
W 2 \ 2=y ) WG —D

where nong1 :[0(z2), +oo[ — [z2, +oo[ denotes the inverse of the restriction®@fto [z2, +o0l.
We finally give the uniqueness theorem

Theorem 3.4.Assuming in addition tha is Lipschitzian on any compact set contained/n+oo[, we have
uniqueness among all positive bounded weak solutions of prafilefiurther, suppose that; is a weak solution
of (1) corresponding to the boundary dagd, i = 1, 2. If pl > p2, thenp; > p, a.e. inf2.

Proof. The proof is similar to that of [8, Lemma 3.5].0

4. Conclusions

We have shown that the nonlinearities introduced by Poiseuille-flow factors derived from the kinetic theory
of gases lead to well-posed mathematical problems, even in the case of discontinuous gap-thickness functions.
Explicit upper and lower bounds for the pressure have been introduced as part of the existence proof (Eq. (5)
and Remark 1). These results not only provide rigorous support to numerical simulations performed with the most
popular rarefied-lubrication models, but also tell modelersahgt.ipschitzian Poiseuille-flow factor that diverges
asp tends to zero and té¢-oo can be ‘safely’ proposed from the mathematical viewpoint.
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