2,956 research outputs found

    Calculating the random guess scores of multiple-response and matching test items

    Get PDF
    For achievement tests, the guess score is often used as a baseline for the lowest possible grade for score to grade transformations and setting the cut scores. For test item types such as multiple-response, matching and drag-and-drop, determin-ing the guess score requires more elaborate calculations than the more straight-forward calculation of the guess score for True-False and multiple-choice test item formats. For various variants of multiple-response and matching types with respect to dichotomous and polytomous scoring, methods for determining the guess score are presented and illustrated with practical applications. The implica-tions for theory and practice are discussed

    A new methodologic approach for clinico-pathologic correlations in invasive placenta previa accreta

    Get PDF
    BACKGROUND: The development of new management strategies for women presenting with placenta accreta spectrum requires quality epidemiology data which have so far been limited by the high variability in clinical and histopathologic data confirming the diagnosis at birth. OBJECTIVE: To evaluate the role of a new methodologic approach for the correlation of clinical and pathological data for women with a history of prior cesarean delivery diagnosed prenatally with placenta previa accreta. STUDY DESIGN: A modified pathologic technique for gross examination of hysterectomy specimens with placenta in-situ consisting of intra-operative examination, immediate post-operative examination and guided histologic sampling was used prospectively in a cohort of 24 patients with singleton pregnancies complicated by placenta low-lying/placenta previa accreta. The maternal characteristics, detailed ultrasound findings, surgical outcomes and histopathologic examination were compared with those of a group of 24 patients with similar clinical characteristics where a standard pathologic examination method was used. RESULTS: The median reporting time for obtaining the complete histopathology results including the microscopic examination was significantly shorter (7 vs 15 days; P<0.001) and the median number of samples taken for histologic examination significantly lower (4 vs 14 samples; P<0.001) in the study group than in the controls. The number of histologic slides showing villous invasion was significantly higher (2 vs 1 slides; P=0.002) and the ratio of the number of samples taken to the numbers of slides confirming villous invasion was significantly lower (2 vs 9; P<0.001) in the study group than in the controls. In all cases of the study group, intra-operative examination identified a dense tangled bed of vessels or multiple vessels running laterally and cranio-caudally in the uterine serosa above the placental insertion which were no longer visible during immediate gross post-operative examination of the hysterectomy specimens. Immediate post-operative dissection enables the differential diagnosis between focal and large increta areas, and between abnormally adherent placenta and invasive placenta accreta. CONCLUSIONS: Valuable clinical information on the serosal vascularity, uterine dehiscence and extension of the accreta area is added with the description of the macroscopic examination during the surgical procedure and immediate dissection of the specimen. This methodological approach is cost-effective and increases the quality of the histologic sampling. It thus provides more accurate correlations with the clinical data and more accurate epidemiologic data collection. Perinatal pathologists should be part of multidisciplinary teams involved the management placenta accreta spectrum disorders

    The Barley Genome Sequence Assembly Reveals Three Additional Members of the <i>CslF </i>(1,3;1,4)-b-Glucan Synthase Gene Family

    Get PDF
    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β-glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls

    Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends

    Get PDF
    This is the final version. Available on open access from Frontiers media via the DOI in this recordThis paper shows recent progress in our understanding of climate variability and trends in the Amazon region, and how these interact with land use change. The review includes an overview of up-to-date information on climate and hydrological variability, and on warming trends in Amazonia, which reached 0.6–0.7°C over the last 40 years, with 2016 as the warmest year since at least 1950 (0.9°C + 0.3°C). We focus on local and remote drivers of climate variability and change. We review the impacts of these drivers on the length of dry season, the role of the forest in climate and carbon cycles, the resilience of the forest, the risk of fires and biomass burning, and the potential “die back” of the Amazon forests if surpassing a “tipping point”. The role of the Amazon in moisture recycling and transport is also investigated, and a review of model development for climate change projections in the region is included. In sum, future sustainability of the Amazonian forests and its many services requires management strategies that consider the likelihood of multi-year droughts superimposed on a continued warming trend. Science has assembled enough knowledge to underline the global and regional importance of an intact Amazon region that can support policymaking and to keep this sensitive ecosystem functioning. This major challenge requires substantial resources and strategic cross-national planning, and a unique blend of expertise and capacities established in Amazon countries and from international collaboration. This also highlights the role of deforestation control in support of policy for mitigation options as established in the Paris Agreement of 2015.National Institute of Science and Technology for Climate ChangeFAPESPNational Coordination for High Level Education and Training (CAPES)Deutsche ForschungsgemeinschafNewton Fun

    Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe aim of this study was to conduct the first comprehensive life cycle assessment and economic analysis on ethanol produced from agave. Compositional and field data from a field experiment in Queensland, Australia was used. Our study shows that ethanol yields from agave (7414 L/ha/year) are comparable to Brazilian sugarcane (9900/L/ha/year) and higher than US corn ethanol (3800/L/ha/year). Furthermore, agave outperforms current first generation biofuel crops in water-related impacts, including Freshwater Eutrophication (96% lower than corn and 88% lower than sugarcane), Marine Ecotoxicity (59% lower than corn and 53% lower than sugarcane) and Water Consumption (46% lower than corn and 69% lower than sugarcane). The life cycle fossil energy use (Fossil Resource Scarcity) for agave is 58% lower than corn and 6% higher than sugarcane. The Global Warming impact for agave is also 62% and 30% lower than that of corn and sugarcane, respectively. Although its Land Use impact, measured by land occupied per unit ethanol output, is 98% higher than corn and 2% higher than sugarcane, agave can be grown on arid land that is not suitable for food crops. The economic analysis suggests that first generation ethanol production from agave is not commercially viable without government support. Overall, the results show that agave is promising for biofuel production in the water-energy-food-environment context.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC

    Incidence and drug treatment of emotional distress after cancer diagnosis : a matched primary care case-control study

    Get PDF
    Notes This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.Peer reviewedPublisher PD

    El Niño Driven Changes in Global Fire 2015/16

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The JULES code used in these experiments is freely available on the JULES trunk from version 5.4 onward. The rose suite used for these experiments is u-bh074. Both the suite and the JULES code are available on the JULES FCM repository: https://code.metoffice.gov.uk/trac/jules (registration required). The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher upon request.El Niño years are characterized by a high sea surface temperature anomaly in the Equatorial Pacific Ocean, which leads to unusually warm and dry conditions over many fire-prone regions globally. This can lead to an increase in burned area and emissions from fire activity, and socio-economic, and environmental losses. Previous studies using satellite observations to assess the impacts of the recent 2015/16 El Niño found an increase in burned area in some regions compared to La Niña years. Here, we use the dynamic land surface model JULES to assess how conditions differed as a result of the El Niño by comparing simulations driven by observations from the year 2015/16 with mean climatological drivers of temperature, precipitation, humidity, wind, air pressure, and short and long-wave radiation. We use JULES with the interactive fire module INFERNO to assess the effects on precipitation, temperature, burned area, and the associated impacts on the carbon sink globally and for three regions: South America, Africa, and Asia. We find that the model projects a variable response in precipitation, with some areas including northern South America, southern Africa and East Asia getting drier, and most areas globally seeing an increase in temperature. As a result, higher burned area is simulated with El Niño conditions in most regions, although there are areas of both increased and decreased burned area over Africa. South America shows the largest fire response with El Niño, with a 13% increase in burned area and emitted carbon, corresponding with the largest decrease in carbon uptake. Within South America, peak fire occurs from August to October across central-southern Brazil, and temperature is shown to be the main driver of the El Niño-induced increase in burned area during this period. Combined, our results indicate that although 2015/16 was not a peak year for global total burned area or fire emissions, the El Niño led to an overall increase of 4% in burned area and 5% in emissions compared to a “No El Niño” scenario for 2015/16, and contributed to a 4% reduction in the terrestrial carbon sink.Newton FundNatural Environment Research Council (NERC)São Paulo Research Foundation (FAPESP)Brazilian National Council for Scientific and Technological Development (CNPq)Inter-American Institute for Global Change Research (IAI

    Lesion topography and microscopic white matter tract damage contribute to cognitive impairment in symptomatic carotid artery disease

    Get PDF
    Purpose: To investigate associations between neuroimaging markers of cerebrovascular disease, including lesion topography and extent and severity of strategic and global cerebral tissue injury, and cognition in carotid artery disease (CAD). Materials and Methods: All participants gave written informed consent to undergo brain magnetic resonance imaging and the Addenbrooke’s Cognitive Examination–Revised. One hundred eight patients with symptomatic CAD but no dementia were included, and a score less than 82 represented cognitive impairment. Group comparison and interrelations between global cognitive and fluency performance, lesion topography, and ultrastructural damage were assessed with voxel-based statistics. Associations between cognition, medial temporal lobe atrophy (MTA), lesion volumes, and global white matter ultrastructural damage indexed as increased mean diffusivity were tested with regression analysis by controlling for age. Diagnostic accuracy of imaging markers selected from a multivariate prediction model was tested with receiver operating characteristic analysis. Results: Cognitively impaired patients (n = 53 [49.1%], classified as having probable vascular cognitive disorder) were older than nonimpaired patients (P = .027) and had more frequent MTA (P<.001), more cortical infarctions (P = .016), and larger volumes of acute (P = .028) and chronic (P = .009) subcortical ischemic lesions. Lesion volumes did not correlate with global cognitive performance (lacunar infarctions, P = .060; acute lesions, P = .088; chronic subcortical ischemic lesions, P = .085). In contrast, cognitive performance correlated with presence of chronic ischemic lesions within the interhemispheric tracts and thalamic radiation (P< .05, false discovery rate corrected). Skeleton mean diffusivity showed the closest correlation with cognition (R2 = 0.311, P< .001) and promising diagnostic accuracy for vascular cognitive disorder (area under the curve, 0.82 [95% confidence interval: 0.75, 0.90]). Findings were confirmed in subjects with a low risk of preclinical Alzheimer disease indexed by the absence of MTA (n = 85). Conclusion: Subcortical white matter ischemic lesion locations and severity of ultrastructural tract damage contribute to cognitive impairment in symptomatic CAD, which suggests that subcortical disconnection within large-scale cognitive neural networks is a key mechanism of vascular cognitive disorder
    corecore