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Abstract 

The aim of this study was to conduct the first comprehensive life cycle assessment and 

economic analysis on ethanol produced from agave. Compositional and field data from a field 

experiment in Queensland, Australia was used. Our study shows that ethanol yields from agave 

(7414 L/ha/year) are comparable to Brazilian sugarcane (9900/L/ha/year) and higher than US 

corn ethanol (3800/L/ha/year). Furthermore, agave outperforms current first generation 

biofuel crops in water-related impacts, including Freshwater Eutrophication (96% lower 

than corn and 88% lower than sugarcane), Marine Ecotoxicity (59% lower than corn 

and 53% lower than sugarcane) and Water Consumption (46% lower than corn and 69% 

lower than sugarcane). The life cycle fossil energy use (Fossil Resource Scarcity) for 

agave is 58% lower than corn and 6% higher than sugarcane. The Global Warming 

impact for agave is also 62% and 30% lower than that of corn and sugarcane, 

respectively. Although its Land Use impact, measured by land occupied per unit ethanol 

output, is 98% higher than corn and 2% higher than sugarcane, agave can be grown on 

arid land that is not suitable for food crops. The economic analysis suggests that first 

generation ethanol production from agave is not commercially viable without 

government support. Overall, the results show that agave is promising for biofuel 

production in the water-energy-food-environment context.  

Key words: Agave; biofuel; environmental impact; life cycle analysis (LCA); water-energy-

food-environment (WEFE) 

Abbreviations: 1G, 1st generation biofuel; 2G, 2nd generation biofuel; 3y, 2.5-year-old 

plants; 5y, 4.5-year-old plants; AusLCI, Australian National Life Cycle Inventory 



Database; GHG, greenhouse gas; LCA, life cycle analysis; LCIA, life cycle impact 

assessment; LCI, life cycle inventory; L/ha/y, litres/hectare/year; NPV, net present 

value; N2O, nitrous oxide; WEF, water-energy-food; WEFE, water-energy-food-

environment; WSC, water soluble carbohydrate
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1. Introduction 1 

The water-energy-food-environment (WEFE) nexus is a huge challenge for the 2 

transition from a fossil fuel-dominated energy system to a more renewable and clean 3 

energy-based one. Although biomass is a renewable energy source that can potentially 4 

contribute to energy security goals, there are growing concerns over the sustainability 5 

of large-scale use of bioenergy (Popp et al., 2014). Its impacts on food security and food 6 

prices (Naylor et al., 2007), fresh water resources (Gerbens-Leenes et al., 2009) and 7 

many ecosystem services (Holland et al., 2015) have all been under increasing scrutiny 8 

recently while its net climate effects in many cases are still disputed mainly due to 9 

significant uncertainties in the associated indirect effects (e.g., potential changes in land 10 

systems (Searchinger et al., 2008) and food markets (Searchinger et al., 2015)) and 11 

nitrous oxide (N2O) emissions from nitrogen fertiliser use (Crutzen et al., 2016).   12 

Agave could be a promising bioenergy feedstock (Somerville et al., 2010) given its 13 

potentially high productivities, ability to thrive in semiarid regions, high water-use 14 

efficiency and low requirements for nitrogen fertilisers (Davis et al., 2011). 15 

Furthermore, its high sugar and low-lignin content make it an attractive crop from a 16 

bioprocessing perspective (Aleman-Nava et al., 2018). A seminal life cycle analysis 17 

(LCA) shows that ethanol derived from agave could offer higher land-use efficiencies 18 

and greenhouse gas (GHG) savings than ethanol produced from corn and switchgrass 19 

(Yan et al., 2011). However, this LCA study, the only one on agave-derived biofuels to 20 

date, is based on a hypothetical ethanol plant in Mexico using 1st generation (1G) 21 

conversion technology only (i.e., hydrolysis and fermentation of simple sugars extracted 22 

from the stem and leaves) and the agave and sugar yield data was sourced from literature 23 
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on tequila production. Moreover, it focused only on energy and GHG analysis. In fact, 24 

comprehensive reviews (Davis et al., 2015, Cushman et al., 2015) on the use of 25 

bioenergy feedstocks including agave have confirmed that Yan et al., (2001) is currently 26 

the only LCA available on agave-derived biofuels and there is a need for a more 27 

comprehensive study. Building on Yan et al. (2011), an LCA was conducted for the 28 

possibility of integrating solar panels and annual agave production with synergies 29 

provided by water inputs for cleaning solar panels being similar to the water 30 

requirements for agave (Ravi et al., 2014). This LCA suggested that the hypothetical co-31 

location of solar panels provided higher returns per m3 of water used than either system 32 

alone. Preliminary economic studies were also conducted on agave for bioenergy 33 

production in Mexico (Nunez et al., 2011) and Australia (Subedi et al., 2017) based on 34 

hypothetical scenarios. To better understand the environmental and economic 35 

performance of agave-derived biofuels a comprehensive study using production and 36 

compositional data from long-term field experiments is required.  37 

The aim of this paper was to conduct the first comprehensive LCA and economic 38 

analysis of 1st and 2nd generation (2G) ethanol produced from agave grown in Australia, 39 

using data collected from a 5-year field experiment in Queensland. The key novelties of 40 

our study therefore include the use of agave yield and sugar content data collected from 41 

a field experiment as well as the consideration of 2nd generation ethanol production. 42 

Australia has the largest proportion of semiarid land in the world (Davis et al., 2011). 43 

These areas do not support the growth of common agricultural crops but are suited for 44 

plants that thrive on marginal and dry lands, such as agave. Results from the LCA will 45 

be discussed in the context of the water-energy-food-environment (WEFE) nexus. The 46 

finding from this paper is expected to inform large-scale development of agave-based 47 
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ethanol in Australia and other countries with significant amounts of semiarid land.  48 

2. Materials and Methods  49 

2.1 Agave field experiment in Australia 50 

This LCA study was based on data from a pilot agave field experimental site at Kalamia 51 

Estate in the Burdekin River Irrigation System, near Ayr, Queensland (see Figure 1). 52 

The site is in a region with tropical savanna climate. The annual average temperature, 53 

based on recordings from the nearest weather station (Ayr DPI Research Station 33002), 54 

is 23.9 °C and precipitation is 947 mm dominated by summer rainfall with very little 55 

rain in the winter (Australian Government Bureau of Meteorology, 2018). For the field 56 

experiment 3500 plants were planted in June 2009 from tissue cultured agave (Agave 57 

tequilana Weber cv. azul) imported from Mexico by Mr Don Chambers of AusAgave 58 

(Holtum et al., 2011).  59 

 60 

Figure 1 Pilot agave field experimental site at Kalamia Estate 61 
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As the experimental site was previously used for sugarcane and fruit (trees) production, 62 

land preparation only included pre-planting operations such as laser levelling, deep 63 

ripping, disc harrowing, rotary hoeing, bed forming and mulching. Nitrogen (250 kg ha-64 

1) fertiliser and herbicides [Treflan® (trifluralin), Atradex® (atrazine), Gramoxone® 65 

(paraquat) and Roundup® (glyphosate)] were applied before planting. The plants were 66 

watered once before transplanting to aid establishment and no irrigation was used during 67 

the experiment.  68 

The agave plants were established on 15 cm raised beds at a density of 4000 plants ha-1 69 

at a row spacing of 1.8 m x 1.6 m. Every second row was thinned out (harvested) at 70 

Year 2 (2011), leaving a density of 2000 plants ha-1. Treflan®, Atradex® and Roundup® 71 

at recommended registered rates were applied once a year during the growing season. 72 

Pruning was performed manually twice a year. The periodic removal of offshoots (also 73 

referred to as suckers or pups) is required to encourage piña (stem) growth. The process 74 

of removal can be mechanised in a commercial operation.  75 

2.2 Measurements of agave yield and sugar content 76 

Three individual agave plants were harvested from Kalamia Estate in 2012 and 2014. 77 

Harvesting was carried out semi-mechanically in this experiment but can be mechanised 78 

using a modified cane harvester and two haul-out trailers. At the time of harvest plants 79 

were 2.5-year-old (2012), referred to hereafter as 3y plants and 4.5-year-old (2014), 80 

referred to hereafter as 5y plants. Immediately upon harvest the roots were washed with 81 

pressurized water to remove excess dirt. The weight of the whole plant and the 82 

individual vegetative parts (leaves, roots, stem and offshoots) were recorded. A 83 

commercial shredder (Cutter-Grinder CG03; South Australia, Australia) was used to 84 

extract the juice from both the agave leaves and stems. Following shredding, the wet 85 
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fibrous bagasse fraction was collected, and the residual juice was removed by crushing 86 

subsets (300 g) of the bagasse using a press metal cylinder. After crushing the 3y 87 

samples were placed in a 65 °C oven for one week and the final weight recorded. The 88 

bagasse pellets from the 5y plants were placed directly in the freezer (-20 °C) and later 89 

lyophilized (Labconco-Freezone, Missouri, United States).  90 

The dried bagasse material (3y and 5y samples) was homogenized and particle size 91 

reduced using a 25 mL stainless steel grinding jar with one 7 mm steel ball. The grinding 92 

jars were shaken at 30 Hz for 3 min (Retsch mill MM400, Retsch GmbH; Haan, 93 

Germany). The ball-milled samples were extracted following a small-scale extraction 94 

method (Corbin et al., 2015). Briefly, the bagasse samples were extracted sequentially in 95 

water, 95% v/v ethanol and 70% v/v ethanol at 80°C for 15 min using a 1:5 ratio of biomass to 96 

extraction liquid and dried to a constant weight.  97 

The water extracts were incubated with fructanase (Fructan HK-Megazyme: AOAC 98 

Method 999.03; International Ireland Ltd., Wicklow, Ireland) to hydrolyse fructan 99 

polymers, as previously described (Corbin et al., 2015). The glucose, fructose and 100 

sucrose in the extracts were quantified by hydrophilic interaction chromatography, using 101 

a Prevail Carbohydrate ES column (150  4.6 mm) on an Agilent 1200 series liquid 102 

chromatography instrument equipped with an evaporative light scattering detector 103 

(Alltech ELSD 800) (Corbin et al., 2015). Sample peak areas were compared to 104 

calibration curves of standard solutions.  105 

For compositional analysis of agave bagasse samples, standardized National Renewable 106 

Energy Laboratory (NREL) analytical methods were followed (Sluiter et al., 2004, Sluiter et 107 

al., 2006, Sluiter et al., 2008) with minor changes, as previously described (Corbin et al., 2015).  108 
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2.3 Goal and scope of the life cycle assessment 109 

The goal of the LCA is to assess the environmental impacts and economic costs of 110 

ethanol produced from agave grown in Australia in comparison with US corn ethanol 111 

and Brazilian sugarcane ethanol. The system boundary considered is field-to-gate, 112 

which includes the following main stages: crop cultivation and harvesting, feedstock 113 

transportation and ethanol production at biorefinery. Transportation of the agave plants 114 

from Mexico to Queensland is not included as this is only the case for the experiment 115 

rather than potential industrial scale production in the future. The functional unit is 1 GJ 116 

of fuel ethanol produced. LCA software SimaPro 8.4 (2018) was used to perform the 117 

calculations.  118 

To compare different key production options, 4 scenarios are evaluated considering the 119 

use of either 3y or 5y plants for 1G or 1G+2G ethanol production. As agave has a 120 

naturally long growth cycle (5-8 years), there are significant financial risks for growers 121 

due to changing environmental and market conditions (Yan et al., 2011). Therefore, it 122 

might be desirable to harvest agave plants early to reduce investment risks. In scenarios 123 

1 and 3, the agave plants are harvested at the end of the third year. All the agrochemical 124 

inputs, farm machinery use, and sugar yields are based on the 3y plants harvested in the 125 

field experiment. Similarly, in scenarios 2 and 4, the agave plants are harvested at the 126 

end of the fifth year and all data used correspond to the 5y plants harvested in the 127 

experiment. 128 

As the technology for 2G ethanol production from cellulosic biomass is still not mature, 129 

we evaluate and compare scenarios that only involve 1G technology with those 130 

involving both 1G and 2G technologies. In all scenarios juice is assumed to be extracted 131 

from the agave stems and leaves using a diffuser system, following a previous study 132 
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(Yan et al., 2011). In the 1G ethanol scenarios (1 and 2), the juice is used to produce 133 

ethanol through enzymatic hydrolysis and fermentation. The bagasse generated from the 134 

extraction process is used as fuel for a cogeneration system to provide the process 135 

energy. In the 1G+2G ethanol scenarios (3 and 4), both the juice and bagasse are used 136 

to produce ethanol while the lignin residue is used as fuel. The system boundaries for 137 

the 1G only scenarios and 1G+2G scenarios are illustrated in Figure 2.  138 

 139 

Figure 2 System boundaries for the 1G only scenarios (a) and 1G+2G scenarios (b) 140 

2.4 Life cycle inventory and environmental impact assessment 141 

The life cycle inventory (LCI) datasets for agave ethanol production are developed by 142 

modifying an existing dataset for Brazilian sugarcane ethanol production in the 143 

Ecoinvent LCI database within SimaPro. Key foreground inputs and their data sources 144 

are presented in the Supporting Information. The background datasets used are mainly 145 

from the Australian National Life Cycle Inventory Database (AusLCI, 2016) where 146 

possible, supplemented by the Ecoinvent database. Existing datasets for US corn ethanol 147 
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and Brazilian sugarcane ethanol in the Ecoinvent database are used for comparison. The 148 

life cycle impact assessment method used is the ReCiPe 2016 Midpoint, which includes 149 

17 impact categories (Huijbregts et al., 2016).   150 

2.5 Economic analysis 151 

The economic analysis used the same physical inputs in the LCA with unit costs in US$. 152 

The costing approach was similar to that of Subedi et al. (2017) except that actual field 153 

production costs for Kalamia Estate, Queensland were used in our study rather than a 154 

hypothetical farm of 37,000 ha over a 40-year investment cycle in Subedi et al. (2017). 155 

All input costings were provided by the farm manager on a per hectare basis and 156 

converted to the functional unit accordingly.  157 

Ethanol plant operating cost was assumed to be US$0.4/L from an existing ethanol plant 158 

in the USA (Hofstrand, 2018). The base case for ethanol price was US$0.50/L based on 159 

the current ethanol price on the global market (Trading Economics, 2018). The 160 

production costs were calculated for 3y and 5y agave under the 1G scenario since 2G 161 

conversion technology is not yet mature in Australia (and costs are difficult to estimate). 162 

Net present value (NPV) was calculated using a 5% discount rate following Subedi et 163 

al. (2017).   164 

3. Results and Discussion 165 

3.1 Chemical analysis of agave 166 

In this study, agave plants were harvested and characterized at two developmental stages, 3y 167 

and 5y. The different anatomic fractions of the plants were separated and crushed following 168 

harvest, yielding bagasse and juice fractions from the leaves, stem and offshoots (5y only). The 169 

offshoots were not separated from the leaf fraction of the 3y plants. The average above-ground 170 
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fresh weight of 3y plants was 205 kg of which 88% was leaves and 12% stem biomass. For 5y 171 

agave plants the mass distribution was 45% leaves, 17% stem and 38% offshoots, averaging 172 

361 kg (Corbin et al., 2016). Unlike other feedstocks which have been considered as dedicated 173 

biofuel crops, agaves are water-dense (8595%) (Corbin et al., 2015, Li et al., 2012). Using a 174 

press metal cylinder 68%, 43% and 27% of the starting mass (% w/w) from leaf, stem 175 

and offshoot tissues, respectively, was collected as juice. Stem bagasse was found to 176 

accumulate non-structural sugars (free sugars, water soluble carbohydrates (WSC) and 177 

fructans) at a higher rate than leaf tissue. Furthermore, the amount of lignin in 5y plants was 178 

lower than 3y plants in both leaf and stem bagasse. Over a two-year period, there was a 35% 179 

increase in sugar accumulation in the leaf juice and a 64% increase measured in the stem juice 180 

(Corbin et al., 2016, Corbin et al., 2015). This finding indicates that the type and amount of 181 

sugar in agave juice is both origin (leaf vs stem) and age dependent. A detailed mass balance 182 

of the bagasse fractions is summarized in Table 1. 183 

Table 1 Mass balance of A. tequiliana bagasse (% w/w) 184 

 185 

^ Combined water and ethanol extractions (includes soluble sugar, lignin, protein and ash).  186 

* Water extracts were hydrolysed with fructanase prior to analysis  187 
$NCPs: Non-cellulosic polysaccharide 188 

Results for cellulose, NCPs, lignin and ash are reported as percentage of non-extracted 189 

biomass.  190 

Biomass 

Extractives Composition of raw biomass Total 

sugar 

(%) 

Total mass 

accounted 

for WSC* 
Total 

extractives^ 
Cellulose NCPs$ Lignin Ash 

Leaf bagasse 

(3y) 
4.3 ± 0.5 16.4 ± 4.2 26.1 ± 0.7 16.6 ± 0.7 17.0 ± 1.5 10.5 ± 0.8 47.0 86.6 

Stem bagasse 

(3y) 
8.9 ± 0.8 18.2 ± 1.8 22.3 ± 2. 2 16.5 ± 2.5 12.7 ± 3.9 16.2 ± 2.0 47.7 85.9 

Leaf bagasse 

(5y) 
12.2 ± 2.3 27.9 ± 2.0 26.5 ± 2.9 17.8 ± 5.9 13.4 ± 1.0 9.7 ± 1.0 56.5 95.3 

Stem bagasse 

(5y) 
42.7 ± 5.2 53.3 ± 5.5 10.6 ± 2.2 10.6 ± 1.3 6.2 ± 1.4 8.0 ± 1.1 63.9 88.7 

Offshoot 

bagasse (5y) 
15.7 ± 1.7 33.2 ± 3.1 19.8 ± 2.1 13.8 ± 1.7 13.1 ±1.6 11.1 ± 0.8 49.3 91.0 
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Italicized values are derived from calculation rather than direct measurement. Total sugar 191 

calculation includes WSC, cellulose and NCPs. Total mass is the sum of total extractives, 192 

cellulose, NCPs, lignin and ash. Data reported are the mean values of three replicates.   193 

 194 

3.2 Estimated ethanol yield  195 

We estimate potential ethanol yield based on data collected from the agave experiment, 196 

including weight of an agave plant and sugar contents presented above, as well as 197 

assumptions on the ethanol production process. The overall sugar utilisation efficiency 198 

is assumed to be 90% for 1G ethanol production (Yan et al., 2011) and 60% for 2G 199 

ethanol production as a range of 30% to 90% can be found in the literature (Kang et al., 200 

2014, Limayem et al., 2012, Hamelinck et al., 2005). The yields of 1G ethanol from 201 

agave juice would be 4854 and 6673 L/ha/y for 3y and 5y agave plants, respectively 202 

(Table 2). These are higher than the ethanol yield of 3809 L/ha/y (81 GJ/ha/y) from 5y 203 

agave plants estimated in a previous study based on data from the Mexican tequila 204 

industry (Yan et al., 2011). If the bagasse is also used to produce 2G ethanol, yields 205 

would increase by 490 and 741 L/ha/y for 3y and 5y agave plants, respectively. Overall, 206 

the yields for 5y agave estimated in this study are comparable to sugarcane (6900 L/ha/y 207 

of 1G ethanol from juice and an additional 3000 L/ha/y of 2G ethanol from bagasse) 208 

and much higher than corn (2900 L/ha/y of 1G ethanol from grain and an additional 900 209 

L/ha/y of 2G ethanol from stover) (Somerville et al., 2010).   210 

Table 2 Estimates for ethanol production from agave 211 

Measured data 

 

 Age of plant 

  3y 5y 

Fresh weight of agave plant kg/plant 205 361 

1G sugar yield kg/plant 10.4 25.8 

2G sugar yield kg/plant 1.6 4.3 

Assumptions     
Overall 1G sugar utilisation efficiency 90% 90% 
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Overall 2G sugar utilisation efficiency 60% 60% 

Theoretical ethanol yield from sugar      kg/kg sugar 0.51        0.51 

Calculated data    
agave yield (fresh biomass) t/ha 410 721 

1G ethanol yield  L/ha/year 4854 6673 

2G ethanol yield  L/ha/year 490 741 

 212 

3.3 Life cycle assessment results 213 

The LCA results for agave ethanol under the four production scenarios are shown in 214 

Table 3 (absolute values) and Figure 3 (relative values). Ethanol that is produced from 215 

5y agave plants has lower impacts for all categories compared to that from 3y plants. 216 

This is mainly because of the relatively higher amounts of sugar and hence ethanol 217 

produced from the 5y plants in proportion to the inputs needed. In general, ethanol 218 

produced from the 1G only options have lower impacts than that from the 1G+2G 219 

options for all impact categories except Land Use. This is mainly because the 1G option 220 

produces significant amounts of surplus electricity from the bagasse and displaces grid 221 

electricity in Queensland, which is mainly generated from coal. For many categories 222 

such as Global Warming, Acidification and Ecotoxicity this even resulted in negative 223 

impacts (i.e. net benefits). The lower Land Use impacts of the 1G+2G options were 224 

because of their moderately higher ethanol yields per unit of land used.    225 

Table 3 LCA results for ethanol produced from agave in Australia under different production 226 
options 227 

Impact category Unit 
1G 

agave 3y 

1G 

agave 5y 

1G+2G  

agave 3y 

1G+2G 

agave 5y 

Global warming kg CO2 eq -23.4 -70.0 28.0 5.1 

Stratospheric ozone depletion kg CFC11 eq 0.0002 0.0001 0.0002 0.0001 

Ionizing radiation kBq Co-60 eq 0.02 0.01 0.02 0.01 

Ozone formation, Human health kg NOx eq 0.05 -0.14 0.25 0.15 

Fine particulate matter formation kg PM2.5 eq 0.04 -0.01 0.08 0.06 
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 228 

 229 

Figure 3 Normalised LCA results for ethanol produced from agave in Australia under different 230 

production options 231 

Examining the contributions of main life cycle stages to different categories of impacts 232 

reveals interesting insights (Figure 4). The manufacturing and transport of agrochemical 233 

inputs such as fertilisers and pesticides contribute noticeably to Ionizing Radiation, 234 

Freshwater Eutrophication, Mineral Resource Scarcity and Water Consumption. An 235 

Ozone formation, Terrestrial 

ecosystems kg NOx eq 0.05 -0.14 0.25 0.15 

Terrestrial acidification kg SO2 eq -0.05 -0.25 0.18 0.07 

Freshwater eutrophication kg P eq 0.001 0.001 0.002 0.001 

Terrestrial ecotoxicity kg 1,4-DCB e 0.03 0.02 0.03 0.03 

Freshwater ecotoxicity kg 1,4-DCB e -0.10 -0.48 0.36 0.19 

Marine ecotoxicity kg 1,4-DBC e -0.08 -0.60 0.55 0.31 

Human carcinogenic toxicity kg 1,4-DBC e 0.31 0.03 0.54 0.35 

Human non-carcinogenic toxicity kg 1,4-DBC e 681 208 1129 848 

Land use m2a crop eq 117 79 107 71 

Mineral resource scarcity kg Cu eq 0.10 0.06 0.11 0.07 

Fossil resource scarcity kg oil eq 4.5 -0.5 7.2 3.8 

Water consumption m3 1.6 -6.7 10.0 5.7 
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LCA of the herbicide, diuron on agave farms in Mexico showed that the most 236 

environmentally friendly option was the one with the shortest transportation distance 237 

(Tirametoakkhara and Lerkkasemsan, 2019). Agricultural machinery use makes 238 

significant or noticeable contributions to most impact categories primarily because of 239 

diesel fuel consumption and emissions and metals used in machinery production. Agave 240 

growth dominates the Stratospheric Ozone Depletion (because of N2O emissions from 241 

nitrogen fertiliser used) and Land Use impacts. Transport of agave to biorefinery, 242 

manufacturing and transport of biorefinery material inputs, and biorefinery 243 

infrastructure together contribute noticeably to Ionizing Radiation, Freshwater 244 

Eutrophication, Human Carcinogenic Toxicity, Mineral Resource Scarcity, Fossil 245 

Resource Scarcity and Water Consumption. Biorefinery operation contributes 246 

significantly to Ozone Formation, Fine Particulate Matter Formation and Terrestrial 247 

Ecotoxicity primarily because of the burning of bagasse for energy generation. Sizable 248 

contributions by biorefinery waste treatment can be seen for Freshwater Eutrophication, 249 

Freshwater Ecotoxicity, Marine Ecotoxicity and Human Non-carcinogenic Toxicity. 250 

Surplus electricity export can offset significant impacts for most categories in the case 251 

of the 1G ethanol options. However, the potential offsets in the case of the 1G+2G 252 

options are limited for 5y agave and insignificant for 3y agave because of much lower 253 

electricity generation.   254 
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 255 

Figure 4 Contributions of main life cycle stages to the different categories of environmental 256 

impacts for ethanol produced from agave in Australia under different production options 257 

(unit:%): upper left- 1G agave 3y; upper right- 1G agave 5y; lower left- 1G+2G agave 3 y; and 258 

lower right- 1G+2G agave 5y 259 

Comparison between ethanol produced from Australian agave, US corn and Brazilian 260 

sugarcane is shown in Table 4 and Figure 5. As existing datasets for US corn and 261 

Brazilian sugarcane ethanol available in the Ecoinvent LCI database only cover 1G 262 

ethanol production and do not consider surplus electricity generation, we compare them 263 

with 1G ethanol produced from 5y agave plants with surplus electricity generated from 264 

bagasse disregarded. The findings show that agave is the lowest in most impact 265 

categories except for Ozone Formation (higher than both corn and sugarcane), 266 

Terrestrial Ecotoxicity (higher than corn), Human Carcinogenic Toxicity (higher than 267 

corn), Land Use (higher than both corn and sugarcane) and Fossil Resource Scarcity 268 

(higher than sugarcane).  269 
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 270 

Table 4 LCA results for ethanol produced from agave in Australia (5y old plants with no 271 

surplus electricity generated from bagasse), corn in US and sugarcane in Brazil 272 

Impact category Unit 

1G agave (5y) 

no surplus 

electricity 

1G  

US corn 

1G  

Brazil 

sugarcane 

Global warming kg CO2 eq 19.1 50.0 27.2 

Stratospheric ozone depletion kg CFC11 eq 0.0001 0.0004 0.0002 

Ionizing radiation kBq Co-60 eq 0.01 2.49 0.71 

Ozone formation, Human health kg NOx eq 0.20 0.09 0.14 

Fine particulate matter formation kg PM2.5 eq 0.07 0.08 0.07 

Ozone formation, Terrestrial 

ecosystems kg NOx eq 0.21 0.10 0.15 

Terrestrial acidification kg SO2 eq 0.13 0.30 0.38 

Freshwater eutrophication kg P eq 0.001 0.021 0.007 

Terrestrial ecotoxicity kg 1,4-DCB e 0.03 0.02 0.04 

Freshwater ecotoxicity kg 1,4-DCB e 0.29 0.96 0.66 

Marine ecotoxicity kg 1,4-DBC e 0.45 1.10 0.95 

Human carcinogenic toxicity kg 1,4-DBC e 0.37 1.35 1.52 

Human non-carcinogenic toxicity kg 1,4-DBC e 928 484 3141 

Land use m2a crop eq 79.3 40.1 77.6 

Mineral resource scarcity kg Cu eq 0.07 0.13 0.15 

Fossil resource scarcity kg oil eq 4.8 11.4 4.6 

Water consumption m3 7.7 14.3 24.5 

 273 
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 274 

Figure 5 Normalised LCA results for ethanol produced from agave in Australia (5-year 275 

old plants with no surplus electricity generated from bagasse), corn in US and sugarcane 276 

in Brazil 277 

The contributions of main life cycle stages to different categories of impacts vary 278 

significantly between agave, corn and sugarcane except for Land Use (Figure 6). For 279 

example, the contribution of biorefinery operation to Global Warming is sizable for corn 280 

as natural gas is used as the main energy source in US corn ethanol plants. This 281 

contribution is insignificant for agave and sugarcane as bagasse is used as an energy 282 

source. However, the combustion of bagasse makes the contribution of biorefinery 283 

operation to air pollution (i.e., Ozone Formation and Fine Particulate Matter Formation) 284 

much higher for agave and sugarcane than for corn. Land Use is dominated by crop 285 

growth for all three crops. The lower Land Use for corn is due to the assumed crop 286 

rotation in the Ecoinvent dataset for corn ethanol as well as the credit gained from the 287 



20 
 

 

protein-rich coproduct used for animal feed. The yield of ethanol achieved from using 288 

agave biomass (6673 L/ha/y) and sugarcane (6900 L/ha/y) are still higher than corn 289 

(2900 L/ha/y). Water Consumption is dominated by irrigation during crop growth for 290 

corn and sugarcane. On the other hand, crop growth accounts for only 1% of agave’s 291 

water consumption as the field was only irrigated once (first year) to facilitate plant 292 

establishment in the agave field experiment. In fact, the majority of life cycle water 293 

consumption for agave is due to the generation of hydropower consumed in various 294 

industrial processes. 295 
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 296 

Figure 6 Contributions of main life cycle stages to the different categories of environmental 297 

impacts for ethanol produced from (unit: %) top- agave in Australia (5-year old plants with no 298 

surplus electricity generated from bagasse); middle- corn in US; and bottom- sugarcane in 299 

Brazil.    300 
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3.4 Economic assessment  301 

The cash flow for 1G ethanol production from 3y (Table 5) and 5y (Table 6) agave were 302 

projected and net present value (NPV) calculated using a 5% discount rate. The agave 303 

feedstock production costs were US$0.94/L (70% of total costs) and US$0.46/L (53% 304 

of total costs), for 3y and 5y agave, respectively. Assuming 1G ethanol processing costs 305 

of US$0.40/L (Hofstrand, 2018), the overall production costs were US$1.34/L and 306 

US$0.86/L for ethanol produced from 3y and 5y agave, respectively. Hence, agave 307 

feedstock costs in Australia are lower than the US$3/L agave feedstock costs estimated 308 

for Mexico, which is 6 times higher than the current price of ethanol (US$0.50/L) 309 

(Nunez et al., 2011).   310 

Table 5 Cash flow projection and net present value calculation for 3-year agave (1G) 311 

Production stage ($/ha) 

 

Year 

1st 2nd 3rd Total 

Land preparation 3,373 0 0 3,373 

Planting 3,692 0 0 3,692 

Maintenance (chemical application, and pruning) 

(Including diesel use for tractors and the cost of labour) 
1,313 1,313 1,313 3,938 

Harvesting 0 0 2,635 2,635 

Total cost for each year 8,377 1,313 3,948 13,637 

Average production cost ($/ha/y) 4,546 

Ethanol processing stage         

Cost of processing 4854 L/ha/year x 3y @ $0.4/L 0 0 5825 5,825 

       

Total production and processing costs per year 8,377 1,313 9,772 19,462 

Average total production and processing costs ($/ha/y) 
                

6,487  
    

Average total production and processing costs ($/L) 
                 

1.34  
      

       

       

Revenue from ethanol 4854 L/ha/year x 3y @ $0.5/L 0 0 14,562         

Total cost of production and processing costs 8,377 1,313 9,772       

Cash flow -8,377 -1,313 4,790   
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 312 

 313 
Table 6 Cash flow projection and net present value calculation for 5-year agave (1G) 314 

 315 

 316 

The sensitivity analysis of the NPV with changes in ethanol price (Figure 7) shows that 317 

the NPV will only become positive at US$1.5/L and US$1/L ethanol price for 3y and 318 

Cumulative cash flow -8,377 -9,690 -4,900   

Net Present Value (NPV) @5% discount rate -$5,031       

Production stage ($/ha) 
Year 

1st 2nd 3rd 4th 5th Total 

Land preparation 3,373 0 0 0 0 3,373 

Planting 3,692 0 0 0 0 3,692 

Maintenance (chemical application, and 

pruning) 

(Including diesel use for tractors and the cost 

of labour) 

959 959 959 959 959 4,794 

Harvesting 0 0 0 0 3,444 3,444 

Total cost for each year 8,023 959 959 959 4,402 15,302 

Average production cost ($/ha/y) 3,060 

         

Ethanol processing stage             

Cost of processing 6673 L/ha/year x 5 y @ 

$0.4/L 
0 0 0 0 

    

13,346  
    

13,346  

         

Total production and processing costs per 

year 
8,023 959 959 959 17,748 

    

28,648  

Average total production and processing 

costs ($/ha/y) 
      5,730        

Average total production and processing 

costs ($/L) 
       0.86            

         

         

Revenue from ethanol 6673 L/ha/y x 5 y 

@ $0.5/L 
0 0 0 0 

    

16,683  
       

Total cost of production and processing 

costs 
8,023 959 959 959 17,748        

Cash flow -8,023 -959 -959 -959 -1,066   

Cumulative cashflow -8,023 -8,982 -9,941 -10,900 -11,965   

Net Present Value (NPV) @5% discount rate -$10,963           
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5y agave, respectively. This means that 1G ethanol produced from agave is currently 319 

not profitable until the ethanol price is >US$1/L (double the current price of 320 

US$0.50/L), consistent with the conclusion by Subedi et al. (2017). This suggests that 321 

government support is necessary for agave-based ethanol, as is true for most biofuels in 322 

production. 323 

 324 

Figure 7 Net present value (US$) projection for 1G ethanol produced from 3y and 5y agave 325 

3.5 Limitations and further research needs 326 

The Water Consumption values calculated here include only blue water (i.e., freshwater 327 

from lakes, dams, rivers and aquifers) but not green water (i.e., soil moisture from 328 

precipitation), which was not covered by current LCI databases (Salmoral et al., 2018) 329 

Water Consumption would be even higher for sugarcane in comparison to agave and 330 

corn if green water is taken into account. This is attributed to the higher average rainfall 331 

in the sugarcane growing regions in Brazil (1407 mm; Marin et al., 2015) than in the 332 
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Corn Belt in the US (940 mm; Ort et al., 2014) and the agave field at Kalamia Estate in 333 

Australia (947 mm; Australian Government Bureau of Meteorology, 2018).  334 

Our study is based on agave yield measured at a field experiment in Queensland on land 335 

that was previously used for agricultural purposes. Future studies should explore the 336 

effects of potential yield variation across Australia, particularly in areas that receive less 337 

rainfall, on the life cycle impacts.  338 

Another limitation is the uncertainty in 2G ethanol conversion efficiency as the 339 

technology is still not mature. This is also the reason why economic analysis was not 340 

performed for the 1G+2G production options. Therefore, the analysis on 2G ethanol 341 

production in our study can be improved when better data is available in the future. 342 

Direct land use change emission is a key parameter that is not considered in our study 343 

due to lack of data. However, there is potential for carbon sequestration when agave is 344 

grown in arid regions and this should be accounted for in future LCA studies. 345 

Experimental research is needed to determine the scale of this potential. 346 

4. Conclusion 347 

 This is the first comprehensive LCA and economic analysis of ethanol produced from 348 

a 5-year agave field experiment. Overall, agave performs better than current 1G biofuel 349 

crops such as corn and sugarcane in water-related environmental impact categories and 350 

produces competitive ethanol yields (L/ha/y). Although its Land Use impact is high, 351 

agave can be grown in unfavourable conditions which do not support food crop 352 

production. Overall, our results show that agave is a promising feedstock for biofuel 353 

production in arid regions that should be supported in the context of the WEFE nexus.   354 
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We present the first comprehensive LCA and economic analysis of ethanol produced 355 

from agave grown in Australia using data collected from a 5-year field experiment in 356 

Queensland. Our analysis shows that an ethanol yield of 7414 L/ha/y (6673 from the 357 

juice using 1st generation ethanol technology and 741 from the bagasse using 2nd 358 

generation technology) is achievable with agave plants harvested at 5-years old. The 359 

economic analysis suggests that 1G ethanol production from agave is not commercially 360 

viable without government support, as with most biofuels in production.  361 

The LCA results suggest that ethanol production using 1G technology only performs 362 

better than 1G+2G technologies mainly because of the significant surplus electricity 363 

generated from the 1G only production option. In addition, agave performs much better 364 

than current 1G biofuel crops such as corn and sugarcane in water-related impacts, 365 

including Freshwater Eutrophication, Freshwater Ecotoxicity, Marine Ecotoxicity and 366 

Water Consumption. The life cycle fossil energy use (Fossil Resource Scarcity) for 367 

agave is significantly lower than corn and only slightly higher than sugarcane. Agave is 368 

not a major food crop and therefore will not have a direct impact on the global or local 369 

food market. Although its Land Use impact, measured by land occupied per unit ethanol 370 

output, is higher than corn and sugarcane, it can potentially be grown on arid land that 371 

is not suitable for food crops. Therefore, competition with food production for land can 372 

largely be avoided. The environmental performance of agave is also favourable when 373 

compared with corn and sugarcane.   374 

 375 
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Overall, our analysis suggests that agave is a highly beneficial feedstock for biofuel 376 

production in arid regions such as Australia that should be supported in the context of 377 

the WEFE nexus. 378 

 379 
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