1,408 research outputs found
Determining the relative evolutionary stages of very young massive star formation regions
We have recently completed an observing program with the Australia Telescope Compact Array towards massive star formation regions traced by 6.7 GHz methanol maser emission. We found the molecular cores could be separated into groups based on their association with/without methanol maser and 24 GHz continuum emission. Analysis of the molecular and ionised gas properties suggested the cores within the groups may be at different evolutionary stages. In this contribution we derive the column densities and temperatures of the cores from the NH3 emission and investigate if this can be used as an indicator of the relative evolutionary stages of cores in the sample. The majority of cores are well fit using single-temperature large velocity gradient models, and exhibit a range of temperatures from ~10 K to >200 K. Under the simple but reasonable assumption that molecular gas in the cores will heat up and become less quiescent with age due to feedback from the powering source(s), the molecular gas kinetic temperature combined with information of the core kinematics seems a promising probe of relative core age in the earliest evolutionary stages of massive star formation
Compact High-Velocity Clouds at High Resolution
Six examples of the compact, isolated high-velocity clouds catalogued by
Braun & Burton (1999) and identified with a dynamically cold ensemble of
primitive objects falling towards the barycenter of the Local Group have been
imaged with the Westerbork Synthesis Radio Telescope; an additional ten have
been imaged with the Arecibo telescope. The imaging reveals a characteristic
core/halo morphology: one or several cores of cool, relatively
high-column-density material, are embedded in an extended halo of warmer,
lower-density material. Several of the cores show kinematic gradients
consistent with rotation; these CHVCs are evidently rotationally supported and
dark-matter dominated. The imaging data allows several independent estimates of
the distances to these objects, which lie in the range 0.3 to 1.0 Mpc. The CHVC
properties resemble what might be expected from very dark dwarf irregular
galaxies.Comment: 12 pages, 7 figures, to appear in "The Chemical Evolution of the
Milky Way: Stars versus Clusters", eds. F. Matteuchi and F. Giovannelli,
Kluwer Academic Publisher
Resolving structure of the disc around HD100546 at 7 mm with ATCA
There is much evidence that planet formation is occurring in the disc around the Herbig Be star HD100546. To learn more about the processes occurring in this disc, we conducted high-resolution imaging at 43/45 GHz with the Australia Telescope Compact Array. Multiple array configurations were used, providing a best spatial resolution of ∼0.15 arcsec, or 15 au at HD100546's distance of ∼100 pc. Significant structure is revealed, but its precise form is dependent on the u − v plane sampling used for the image reconstruction. At a resolution of ≤30 au, we detected an inner gap in the disc with a radius of ∼25 au and a position angle approximately along the known disc major axis. With different weighting, and an achieved resolution of ∼15 au, emission appears at the centre and the disc takes on the shape of an incomplete ring, much like a horseshoe, again with a gap radius of ∼25 au. The position angle of the disc major axis and its inclination from face-on are determined to be 140° ± 5° and 40° ± 5°, respectively. The ∼25 au gap radius is confirmed by a null in the real part of the binned visibilities at 320 ± 10 kλ, whilst the non-axisymmetric nature is also confirmed through significant structure in the imaginary component. The emission mechanism at the central peak is most likely to be free–free emission from a stellar or disc wind. Overall our data support the picture of at least one, but probably several, giant planets orbiting HD100546 within 25 au
RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken
The yolk sac is phylogenetically the oldest of the extraembryonic membranes. The human embryo retains a yolk sac, which goes through primary and secondary phases of development, but its importance is controversial. Although it is known to synthesize proteins, its transport functions are widely considered vestigial. Here, we report RNA-sequencing (RNA-seq) data for the human and murine yolk sacs and compare those data with data for the chicken. We also relate the human RNA-seq data to proteomic data for the coelomic fluid bathing the yolk sac. Conservation of transcriptomes across the species indicates that the human secondary yolk sac likely performs key functions early in development, particularly uptake and processing of macro- and micronutrients, many of which are found in coelomic fluid. More generally, our findings shed light on evolutionary mechanisms that give rise to complex structures such as the placenta. We identify genetic modules that are conserved across mammals and birds, suggesting these modules are part of the core amniote genetic repertoire and are the building blocks for both oviparous and viviparous reproductive modes. We propose that although a choriovitelline placenta is never established physically in the human, the placental villi, the exocoelomic cavity, and the secondary yolk sac function together as a physiological equivalent.M.G.E. is the recipient of a Research Fellowship from St. John’s College, University of Cambridge. This study was supported by Medical Research Council Grant MR/L020041/1
Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions
Background
Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals.
Results
Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall.
Conclusions
The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions
Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines
Background: Multiple imputation (MI) provides an effective approach to handle missing covariate
data within prognostic modelling studies, as it can properly account for the missing data
uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling
techniques to obtain the estimates of interest. The estimates from each imputed dataset are then
combined into one overall estimate and variance, incorporating both the within and between
imputation variability. Rubin's rules for combining these multiply imputed estimates are based on
asymptotic theory. The resulting combined estimates may be more accurate if the posterior
distribution of the population parameter of interest is better approximated by the normal
distribution. However, the normality assumption may not be appropriate for all the parameters of
interest when analysing prognostic modelling studies, such as predicted survival probabilities and
model performance measures.
Methods: Guidelines for combining the estimates of interest when analysing prognostic modelling
studies are provided. A literature review is performed to identify current practice for combining
such estimates in prognostic modelling studies.
Results: Methods for combining all reported estimates after MI were not well reported in the
current literature. Rubin's rules without applying any transformations were the standard approach
used, when any method was stated.
Conclusion: The proposed simple guidelines for combining estimates after MI may lead to a wider
and more appropriate use of MI in future prognostic modelling studies
Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest
During a 1-year measurement period, we recorded the CO2 efflux from stems (RS) and coarse woody roots (RR) of 13–20 common tree species at three study sites at 1,050, 1,890 and 3,050 m a.s.l. in an Andean moist forest. The objective of this work was to study elevation changes of woody tissue CO2 efflux and the relationship to climate variation, site characteristics and growth. Furthermore, we aim to provide insights into important respiration–productivity relationships of a little studied tropical vegetation type. We expected RS and RR to vary with dry and humid season conditions. We further expected RS to vary more than RR due to a more stable soil than air temperature regime. Seasonal variation in woody tissue CO2 efflux was indeed mainly attributable to stems. At the same time, temperature played only a small role in triggering variations in RS. At stand level, the ratio of C release (g C m−2 ground area year−1) between stems and roots varied from 4:1 at 1,050 m to 1:1 at 3,050 m, indicating the increasing prevalence of root activity at high elevations. The fraction of growth respiration from total respiration varied between 10 (3,050 m) and 14% (1,050 m) for stems and between 5 (1,050 m) and 30% (3,050 m) for roots. Our results show that respiratory activity and hence productivity is not driven by low temperatures towards higher elevations in this tropical montane forest. We suggest that future studies should examine the limitation of carbohydrate supply from leaves as a driver for the changes in respiratory activity with elevation
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
Complex Deleterious Interactions Associated with Malic Enzyme May Contribute to Reproductive Isolation in the Copepod Tigriopus californicus
Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
- …