204 research outputs found

    Growth rings in tropical trees : role of functional traits, environment, and phylogeny

    Get PDF
    Acknowledgments Financial support of the Centre National de la Recherche Scientifique (USR 3330), France, and from the Rufford Small Grants Foundation (UK) is acknowledged. We thank the private farmers and coffee plantation companies of Kodagu for providing permissions and logistical support for this project. We are grateful to N. Barathan for assistance with slide preparation and data entry, S. Aravajy for botanical assistance, S. Prasad and G. Orukaimoni for technical inputs, and A. Prathap, S. Shiva, B. Saravana, and P. Shiva for field assistance. The corresponding editor and three anonymous reviewers provided insightful comments that improved the manuscript.Peer reviewedPostprin

    Regeneration in felling gaps after logging in Acre state, Western Amazon.

    Get PDF
    Regeneration of tree species in felling gaps were studied during the first two years following harvesting in a tropical forest in Acre state, Brazil. Felling gaps averaged 340 m2 in size, while canopy openings averaged 17%. Seedling mortality in adjacent undisturbed forest was 4.6% yr', and 59.6% yr·1 and 100% yr' in the crown and trunk zones respectively, two years after logging. Recruitment of new seedlings inthe undisturbed forest understorey averaged 462 plants ha' yr', two years after gap creation. Inthe crown zones of the gaps, recruitment of seedlings averaged 1350 ha' yr', and in the trunk zones 1392 ha' yr'. The entire seedling community in trunk zones after logging was composed of new recruits. lhere was a tendency for seedling growth rates to increase from the natural forest (0,21cm yr-1) to the crown zone (0.40cm yr'), Before gap creation, species richness and diversity and seedling density were quite similar. After gap creation a sharp decrease could be verified in the gap.zones, however the differences between gap and undisturbed forest decreased rapidly in the second year after gap creation. lhe regeneration of commercial species was not affected by gap creation apart from the increase in growth rates

    Sustainable forest management for smallholder farmers in the Brazilian Amazon.

    Get PDF
    The paper describes a forest management system to be applied on smallholder farms, particularly on settlement projects in the Brazilian Amazon. The proposed forest management system was designed to generate a new source of family income and to maintain forest structure and biodiversity. The system is new in three main characteristics: the use of short cycles in the management of tropical forests, the low harvesting intensity and environmental impact, and the direct involvement of the local population in ali forest management activities. It is based on a minimum felling cycle of ten years and an annual timber harvest of 5-10 m3 ha-1

    Species-habitat associations in a Sri Lankan dipterocarp forest

    Get PDF
    Forest structure and species distribution patterns were examined among eight topographically defined habitats for the 205 species with stems ≥ 1 cm dbh inhabiting a 25-ha plot in the Sinharaja rain forest, Sri Lanka. The habitats were steep spurs, less-steep spurs, steep gullies and less-steep gullies, all at either lower or upper elevations. Mean stem density was significantly greater on the upper spurs than in the lower, less-steep gullies. Stem density was also higher on spurs than in gullies within each elevation category and in each upper-elevation habitat than in its corresponding lower-elevation habitat. Basal area varied less among habitats, but followed similar trends to stem density. Species richness and Fisher\u27s alpha were lower in the upper-elevation habitats than in the lower-elevation habitats. These differences appeared to be related to the abundances of the dominant species. Of the 125 species subjected to torus-translation tests, 99 species (abundant and less abundant and those in different strata) showed at least one positive or negative association to one or more of the habitats. Species associations were relatively more frequent with the lower-elevation gullies. These and the previous findings on seedling ecophysiology, morphology and anatomy of some of the habitat specialists suggest that edaphic and hydrological variation related to topography, accompanied by canopy disturbances of varying intensity, type and extent along the catenal landscape, plays a major role in habitat partitioning in this forest. Copyright © 2006 Cambridge University Press

    Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy.

    Get PDF
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales

    The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo

    Get PDF
    Forest degradation through logging is pervasive throughout the world's tropical forests, leading to changes in the three-dimensional canopy structure that have profound consequences for wildlife, microclimate and ecosystem functioning. Quantifying these structural changes is fundamental to understanding the impact of degradation, but is challenging in dense, structurally complex forest canopies. We exploited discrete-return airborne LiDAR surveys across a gradient of logging intensity in Sabah, Malaysian Borneo, and assessed how selective logging had affected canopy structure (Plant Area Index, PAI, and its vertical distribution within the canopy). LiDAR products compared well to independent, analogue models of canopy structure produced from detailed ground-based inventories undertaken in forest plots, demonstrating the potential for airborne LiDAR to quantify the structural impacts of forest degradation at landscape scale, even in some of the world's tallest and most structurally complex tropical forests. Plant Area Index estimates across the plot network exhibited a strong linear relationship with stem basal area (R2 = 0.95). After at least 11–14 years of recovery, PAI was ~28% lower in moderately logged plots and ~52% lower in heavily logged plots than that in old-growth forest plots. These reductions in PAI were associated with near-complete lack of trees >30-m tall, which had not been fully compensated for by increasing plant area lower in the canopy. This structural change drives a marked reduction in the diversity of canopy environments, with the deep, dark understorey conditions characteristic of old-growth forests far less prevalent in logged sites. Full canopy recovery is likely to take decades. Synthesis and applications. Effective management and restoration of tropical forests requires detailed monitoring of the forest and its environment. We demonstrate that airborne LiDAR can effectively map the canopy architecture of the complex tropical forests of Borneo, capturing the three-dimensional impact of degradation on canopy structure at landscape scales, therefore facilitating efforts to restore and conserve these ecosystems

    Sustainable forest management for smallholder farmers in the Brazilian Amazon.

    Get PDF
    The ecological basis for this sustainable forest management system, the components of the management system, and their application in a pilot project on smallholder farms in the pc Pedro Peixoto in Acre state in the western Brazilian Amazon are described in this chapter. Preliminary results from the pilot project on tree growth, mortality, and recruitment after an initial harvesting are also discussed

    The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation

    Get PDF
    Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAFMEK- ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS

    Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics

    Get PDF
    In a context of both long-term climatic changes and short-term climatic shocks, temporal dynamics profoundly influence ecosystems and societies. In low income contexts in the Tropics, where both exposure and vulnerability to climatic fluctuations is high, the frequency, duration, and trends in these fluctuations are important determinants of socio-ecological resilience. In this paper, the dynamics of six diverse socio-ecological systems (SES) across the Tropics – ranging from agricultural and horticultural systems in Africa and Oceania to managed forests in South East Asia and coastal systems in South America – are examined in relation to the 2015–16 El Niño, and the longer context of climatic variability in which this short-term ‘event’ occurred. In each case, details of the socio-ecological characteristics of the systems and the climate phenomena experienced during the El Niño event are described and reflections on the observed impacts of, and responses to it are presented. Drawing on these cases, we argue that SES resilience (or lack of) is, in part, a product of both long-term historical trends, as well as short-term shocks within this history. Political and economic lock-ins and dependencies, and the memory and social learning that originates from past experience, all contribute to contemporary system resilience. We propose that the experiences of climate shocks can provide a window of insight into future ecosystem responses and, when combined with historical perspectives and learning from multiple contexts and cases, can be an important foundation for efforts to build appropriate long-term resilience strategies to mediate impacts of changing and uncertain climates
    corecore