460 research outputs found

    The Physical Effects of Progenitor Rotation: Comparing Two Long-Duration 3D Core-Collapse Supernova Simulations

    Full text link
    We analyse and determine the effects of modest progenitor rotation in the context of core-collapse supernovae by comparing two separate long-duration three-dimensional simulations of 9 M⊙_{\odot} progenitors, one rotating with an initial spin period of ∼\sim60 seconds and the other non-rotating. We determine that both models explode early, though the rotating model explodes a bit earlier. Despite this difference, the asymptotic explosion energies (∼\sim1050^{50} ergs) and residual neutron star baryon masses (∼\sim1.3 M⊙_{\odot}) are similar. We find that the proto-neutron star (PNS) core can deleptonize and cool significantly more quickly. Soon into the evolution of the rotating model, we witness more vigorous and extended PNS core convection that early in its evolution envelopes the entire inner sphere, not just a shell. Moreover, we see a corresponding excursion in both the νe\nu_e luminosity and gravitational-wave strain that may be diagnostic of this observed dramatic phenomenon. In addition, after bounce the innermost region of the rotating model seems to execute meridional circulation. The rotationally-induced growth of the convective PNS region may facilitate the growth of core B-fields by the dynamo mechanism by facilitating the achievement of the critical Rossby number condition for substantial growth of a dipole field, obviating the need for rapid rotation rates to create dipole fields of significance. The next step is to explore the progenitor-mass and spin dependencies across the progenitor continuum of the supernova explosion, dynamics, and evolution of PNS convection and its potential role in the generation of magnetar and pulsar magnetic fields.Comment: Withdrawn pending further calculation

    The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.</p> <p>Results</p> <p>Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.</p> <p>Conclusions</p> <p>The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.</p

    The Next Generation Space Telescope

    Get PDF
    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the programmatic approach needed to bring NGST into being. The essential points of this panel discussion have been incorporated into a series of recommendations that represent the conclusions of the workshop. Speakers were asked to provide manuscripts of their presentation. Those received were reproduced here with only minor editorial changes. The few missing papers have been replaced by the presentation viewgraphs. The discussion that follows each speaker's paper was derived from the question and answer sheets, or if unavailable, from the tapes of the meeting. In the latter case, the editors have made every effort to faithfully represent the discussion

    Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays

    Get PDF
    J. Parsons, Euan Hendry, C. P. Burrows, Baptiste Auguié, J. Roy Sambles, and William L. Barnes, Physical Review B, Vol. 79, article 073412 (2009). Copyright © 2009 by the American Physical Society.We compare the optical response of periodic nondiffracting metallic nanoparticle and nanohole arrays. Experimental data from both structures show a pronounced minimum in their wavelength-dependent transmittance that, through numerical modeling, we identify as being due to the excitation of localized surface-plasmon resonances associated with the nanoparticles/nanoholes. Our main finding is that, while the optical response of the nanoparticle arrays is largely independent of interparticle separation, the response from nanohole arrays shows a marked dependence on interhole separation. We attribute this effect to coupling between localized surface-plasmon resonances mediated by the symmetric surface plasmon-polaritons associated with the metal film. Further numerical modeling supports this view

    Thermal Emission and Tidal Heating of the Heavy and Eccentric Planet XO-3b

    Full text link
    We determined the flux ratios of the heavy and eccentric planet XO-3b to its parent star in the four IRAC bands of the Spitzer Space Telescope: 0.101% +- 0.004% at 3.6 micron; 0.143% +- 0.006% at 4.5 micron; 0.134% +- 0.049% at 5.8 micron and 0.150% +- 0.036% at 8.0 micron. The flux ratios are within [-2.2,0.3, -0.8, -1.7]-sigma of the model of XO-3b with a thermally inverted stratosphere in the 3.6 micron, 4.5 micron, 5.8 micron and 8.0 micron channels, respectively. XO-3b has a high illumination from its parent star (Fp ~(1.9 - 4.2) x 10^9 ergs cm^-2 s^-1) and is thus expected to have a thermal inversion, which we indeed observe. When combined with existing data for other planets, the correlation between the presence of an atmospheric temperature inversion and the substellar flux is insufficient to explain why some high insolation planets like TrES-3 do not have stratospheric inversions and some low insolation planets like XO-1b do have inversions. Secondary factors such as sulfur chemistry, atmospheric metallicity, amounts of macroscopic mixing in the stratosphere or even dynamical weather effects likely play a role. Using the secondary eclipse timing centroids we determined the orbital eccentricity of XO-3b as e = 0.277 +- 0.009. The model radius-age trajectories for XO-3b imply that at least some amount of tidal-heating is required to inflate the radius of XO-3b, and the tidal heating parameter of the planet is constrained to Qp < 10^6 .Comment: Accepted for publications in The Astrophysical Journa

    The Gravitational-Wave Signature of Core-Collapse Supernovae

    Full text link
    We calculate the gravitational-wave (GW) signatures of detailed 3D core-collapse supernova simulations spanning a range of massive stars. Most of the simulations are carried out to times late enough to capture more than 95% of the total GW emission. We find that the f/g-mode and f-mode of proto-neutron star oscillations carry away most of the GW power. The f-mode frequency inexorably rises as the proto-neutron star (PNS) core shrinks. We demonstrate that the GW emission is excited mostly by accretion plumes onto the PNS that energize modal oscillations and also high-frequency (``haze") emission correlated with the phase of violent accretion. The duration of the major phase of emission varies with exploding progenitor and there is a strong correlation between the total GW energy radiated and the compactness of the progenitor. Moreover, the total GW emissions vary by as much as three orders of magnitude from star to star. For black-hole formation, the GW signal tapers off slowly and does not manifest the haze seen for the exploding models. For such failed models, we also witness the emergence of a spiral shock motion that modulates the GW emission at a frequency near ∼\sim100 Hertz that slowly increases as the stalled shock sinks. We find significant angular anisotropy of both the high- and low-frequency (memory) GW emissions, though the latter have very little power.Comment: submitted to PR

    Bulk crystal growth and surface preparation of NiSb, MnSb, and NiMnSb

    Get PDF
    Bulk single crystal and polycrystalline samples of NiSb, MnSb, and NiMnSb have been grown and characterized. The lattice parameter of NiMnSb was found to be 5.945 ± 0.001 Å, around 0.25% larger than previous reports. The surface preparation of these materials was investigated using x-ray photoelectron spectroscopy. Wet etching with HCl and argon ion sputtering were used in tandem with vacuum annealing. For both binary materials, a clean and stoichiometric surface could be regained by HCl etching and annealing alone. However, clean and stoichiometric ternary NiMnSb was not successfully prepared by these methods. The transition metal 2p and 3p levels are analyzed for all three materials

    Epitaxial growth of cubic MnSb on GaAs AND InGaAs(111)

    Get PDF
    The cubic polymorph of the binary transition metal pnictide (TMP) MnSb, c-MnSb, has been predicted to be a robust half-metallic ferromagnetic (HMF) material with minority spin gap ≳1 eV. Here, MnSb epilayers are grown by molecular beam epitaxy (MBE) on GaAs and In0.5Ga0.5As(111) substrates and analyzed using synchrotron radiation X-ray diffraction. We find polymorphic growth of MnSb on both substrates, where c-MnSb co-exists with the ordinary niccolite n-MnSb polymorph. The grain size of the c-MnSb is of the order of tens of nanometer on both substrates and its appearance during MBE growth is independent of the very different epitaxial strain from the GaAs (3.1%) and In0.5Ga0.5As (0.31%) substrates
    • …
    corecore