36 research outputs found

    Intrinsic, Pro-Apoptotic Effects of IGFBP-3 on Breast Cancer Cells are Reversible: Involvement of PKA, Rho, and Ceramide

    Get PDF
    We established previously that IGFBP-3 could exert positive or negative effects on cell function depending upon the extracellular matrix composition and by interacting with integrin signaling. To elicit its pro-apoptotic effects IGFBP-3 bound to caveolin-1 and the beta 1 integrin receptor and increased their association culminating in MAPK activation. Disruption of these complexes or blocking the beta 1 integrin receptor reversed these intrinsic actions of IGFBP-3. In this study we have examined the signaling pathway between integrin receptor binding and MAPK activation that mediates the intrinsic, pro-apoptotic actions of IGFBP-3. We found on inhibiting protein kinase A (PKA), Rho associated kinase (ROCK), and ceramide, the accentuating effects of IGFBP-3 on apoptotic triggers were reversed, such that IGFBP-3 then conferred cell survival. We established that IGFBP-3 activated Rho, the upstream regulator of ROCK and that beta1 integrin and PKA were upstream of Rho activation, whereas the involvement of ceramide was downstream. The beta 1 integrin, PKA, Rho, and ceramide were all upstream of MAPK activation. These data highlight key components involved in the pro-apoptotic effects of IGFBP-3 and that inhibiting them leads to a reversal in the action of IGFBP-3

    Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells

    Get PDF
    © The Author(s) 2018Limited access to human islets has prompted the development of human beta cell models. The human beta cell lines EndoC-βH1 and EndoC-βH2 are increasingly used by the research community. However, little is known of their electrophysiological and secretory properties. Here, we monitored parameters that constitute the glucose-triggering pathway of insulin release. Both cell lines respond to glucose (6 and 20 mM) with 2- to 3-fold stimulation of insulin secretion which correlated with an elevation of [Ca2+]i, membrane depolarisation and increased action potential firing. Similar to human primary beta cells, KATP channel activity is low at 1 mM glucose and is further reduced upon increasing glucose concentration; an effect that was mimicked by the KATP channel blocker tolbutamide. The upstroke of the action potentials reflects the activation of Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. The repolarisation involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis presented a similar kinetics to human primary beta cells. The ultrastructure of these cells shows insulin vesicles composed of an electron-dense core surrounded by a thin clear halo. We conclude that the EndoC-βH1 and -βH2 cells share many features of primary human β-cells and thus represent a useful experimental model.Peer reviewedFinal Published versio

    The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration.

    Get PDF
    The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration

    Serum IgE Reactivity Profiling in an Asthma Affected Cohort

    Get PDF
    BACKGROUND: Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear. METHODS: We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema. RESULTS: Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09). An artificial neural network (ANN)-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations. CONCLUSIONS: These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile

    Plasma fucosylated glycans and C-reactive protein as biomarkers of HNF1A-MODY in young adult–onset nonautoimmune diabetes

    Get PDF
    OBJECTIVE Maturity-onset diabetes of the young (MODY) due to variants in HNF1A is the commonest type of monogenic diabetes. Frequent misdiagnosis results in missed opportunity to use sulfonylureas as first-line treatment. A nongenetic biomarker could improve selection of subjects for genetic testing and increase diagnosis rates. We previously reported that plasma levels of antennary fucosylated N-glycans and hs-CRP are reduced in individuals with HNF1A-MODY. In this study, we examined the potential use of N-glycans and hs-CRP in discriminating individuals with damaging HNF1A alleles from those without HNF1A variants in an unselected population of young adults with nonautoimmune diabetes. RESEARCH DESIGN AND METHODS We analyzed the plasma N-glycan profile, measured hs-CRP, and sequenced HNF1A in 989 individuals with diabetes diagnosed when younger than age 45, persistent endogenous insulin production, and absence of pancreatic autoimmunity. Systematic assessment of rare HNF1A variants was performed. RESULTS We identified 29 individuals harboring 25 rare HNF1A alleles, of which 3 were novel, and 12 (in 16 probands) were considered pathogenic. Antennary fucosylated N-glycans and hs-CRP were able to differentiate subjects with damaging HNF1A alleles from those without rare HNF1A alleles. Glycan GP30 had a receiver operating characteristic curve area under the curve (AUC) of 0.90 (88% sensitivity, 80% specificity, cutoff 0.70%), whereas hs-CRP had an AUC of 0.83 (88% sensitivity, 69% specificity, cutoff 0.81 mg/L). CONCLUSIONS Half of rare HNF1A sequence variants do not cause MODY. N-glycan profile and hs-CRP could both be used as tools, alone or as adjuncts to existing pathways, for identifying individuals at high risk of carrying a damaging HNF1A allele

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    How do the IGFBPs elicit their IGF-independent actions in breast epithelial cells

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Fifth Domain in the G‑Quadruplex-Forming Sequence of the Human <i>NEIL3</i> Promoter Locks DNA Folding in Response to Oxidative Damage

    No full text
    DNA oxidation is an inevitable and usually detrimental process, but the cell is capable of reversing this state because the cell possesses a highly developed set of DNA repair machineries, including the DNA glycosylase NEIL3 that is encoded by the <i>NEIL3</i> gene. In this work, the G-rich promoter region of the human <i>NEIL3</i> gene was shown to fold into a dynamic G-quadruplex (G4) structure under nearly physiological conditions using spectroscopic techniques (e.g., nuclear magnetic resonance, circular dichroism, fluorescence, and ultraviolet–visible) and DNA polymerase stop assays. The presence of 8-oxo-7,8-dihydroguanine (OG) modified the properties of the <i>NEIL3</i> G4 and entailed the recruitment of the fifth domain to function as a “spare tire”, in which an undamaged fifth G-track is swapped for the damaged section of the G4. The polymerase stop assay findings also revealed that owing to its dynamic polymorphism, the <i>NEIL3</i> G4 is more readily bypassed by DNA polymerase I (Klenow fragment) than well-known oncogene G4s are. This study identifies the <i>NEIL3</i> promoter possessing a G-rich element that can adopt a G4 fold, and when OG is incorporated, the sequence can lock into a more stable G4 fold via recruitment of the fifth track of Gs

    Lost floodplain wetland environments and efforts to restore connectivity, habitat and water quality settings on the Great Barrier Reef

    Get PDF
    Managers are moving towards implementing large-scale coastal ecosystem restoration projects, however, many fail to achieve desired outcomes. Among the key reasons for this are a lack of integration with a whole-of-catchment approach, the scale of the project (temporal, spatial), the requirement for on-going costs for maintenance, lack of clear objectives, a focus on threats rather than services/values, funding cycles, engagement or change in stakeholders, and prioritization of project sites. Here we critically assess the outcomes of activities in three coastal wetland complexes positioned along the catchments of the Great Barrier Reef (GBR) lagoon, Australia, that have been subjected to restoration investment over a number of decades. Each floodplain has been modified by intensive agricultural production, heavy industry and mining infrastructure, urban/peri urban expansion, aquaculture development and infrastructure expansion. Most development has occurred in low-lying coastal floodplains, resulting in major hydrological modifications to the landscape. This has left the floodplain wetlands in a degraded and hydrologically modified state, with poor water quality (hypoxic, eutrophication, sedimentation, and persistent turbidity), loss of habitat, and disconnected because of flow hydraulic barriers, excessive aquatic plant growth, or establishment of invasive species. Successful GBR wetland ecosystem restoration and management must first include an understanding of what constitutes ‘success' and be underpinned by understanding of complex cause and effect pathways, with a focus on management of services and values. This approach should recognize these wetlands are still assets in a modified landscape. Suitable, long term, scientific knowledge is necessary to provide government and private companies with the confidence and comfort that their investment delivers dividend (environmental) returns

    Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants

    No full text
    Most genetic association signals for type 2 diabetes risk are located in non-coding regions of the genome, hindering translation into molecular mechanisms. Physiological studies have shown a majority of disease-associated variants to exert their effects through pancreatic islet dysfunction. Systematically characterizing the role of regional transcripts in β-cell function could identify the underlying disease-causing genes, but large-scale studies in human cellular models have previously been impractical. We developed a robust and scalable strategy based on arrayed gene silencing in the human β-cell line EndoC-βH1. In a screen of 300 positional candidates selected from 75 type 2 diabetes regions, each gene was assayed for effects on multiple disease-relevant phenotypes, including insulin secretion and cellular proliferation. We identified a total of 45 genes involved in β-cell function, pointing to possible causal mechanisms at 37 disease-associated loci. The results showed a strong enrichment for genes implicated in monogenic diabetes. Selected effects were validated in a follow-up study, including several genes (ARL15, ZMIZ1 and THADA) with previously unknown or poorly described roles in β-cell biology. We have demonstrated the feasibility of systematic functional screening in a human β-cell model, and successfully prioritized plausible disease-causing genes at more than half of the regions investigated
    corecore