5 research outputs found

    Enhancing biopharmaceutical performance of an anticancer drug by long chain PUFA based self-nanoemulsifying lipidic nanomicellar system.

    Get PDF
    The aim of this study was to develop polyunsaturated fatty acid (PUFA) long chain glyceride (LCG) enriched self-nanoemulsifying lipidic nanomicelles systems (SNELS) for augmenting lymphatic uptake and enhancing oral bioavailability of docetaxel and compare its biopharmaceutical performance with a medium-chain fatty acid glyceride (MCG) SNELS. Equilibrium solubility and pseudo ternary phase studies facilitated the selection of suitable LCG and MCG. The critical material attributes (CMAs) and critical process parameters (CPPs) were earmarked using Placket-Burman Design (PBD) and Fractional Factorial Design (FFD) for LCG- and MCG-SNELS respectively, and nano micelles were subsequently optimized using I- and D-optimal designs. Desirability function unearthed the optimized SNELS with Temul 85% and Perm45min >75%. The SNELS demonstrated efficient biocompatibility and energy dependent cellular uptake, reduced P-gp efflux and increased permeability using bi-directional Caco-2 model. Optimal PUFA enriched LCG-SNELS exhibited distinctly superior permeability and absorption parameters during ex vivo permeation, in situ single pass intestinal perfusion, lymphatic uptake and in vivo pharmacokinetic studies over MCG-SNELS. [Abstract copyright: Copyright © 2017. Published by Elsevier B.V.

    Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention

    Get PDF
    Abstract: Background: Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. Results: The developed nanosystem exhibited a particle size in the range of 228–255 nm and drug entrapment of 45–54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 μm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. Conclusions: Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects

    Enhancing Biopharmaceutical Attributes of Phospholipid Complex-loaded Nanostructured Lipidic Carriers of Mangiferin: Systematic Development, Characterization and Evaluation

    Get PDF
    Mangiferin (Mgf), largely expressed out from the leaves and stem bark of Mango, is a potent antioxidant. However, its in vivo activity gets tremendously reduced owing to poor aqueous solubility and inconsistent gastrointestinal absorption, high hepatic first-pass metabolism and high P-gp efflux. The current research work, therefore, was undertaken to overcome the biopharmaceutical hiccups by developing the Mgf-phospholipid complex (PLCs) loaded in nanostructured lipidic carriers (NLCs). The PLCs and NLCs were prepared using refluxing, solvent evaporation and hot emulsification technique, respectively with various molar ratios of Mgf and Phospholipon 90 G, i.e., 1:1; 1:2; and 1:3. The complex was evaluated for various physicochemical parameters like drug content (96.57%), aqueous solubility (25-fold improved) and oil-water partition coefficient (10-fold enhanced). Diverse studies on the prepared complex using FTIR, DSC, PXRD and SEM studies ratified the formation of PLCs at 1:1 ratio. The PLCs were further incorporated onto NLCs, which were systematically optimized employing a face centered cubic design (FCCD), while evaluating for particle size, zeta potential, encapsulation efficiency and in vitro drug release as the CQAs. Caco-2 cell line indicated insignificant cytotoxicity, and P-gp efflux, bi-directional permeability model and in situ perfusion studies specified enhanced intestinal permeation parameters. In vivo pharmacokinetic studies revealed notable increase in the values of Cmax (4.7-fold) and AUC (2.1-fold), respectively, from PLCs-loaded NLCs vis-à-vis Mgf solution. In a nutshell, the promising results observed from the present research work signified boosted biopharmaceutical potential of the optimized PLCs-loaded NLCs for potentially augmenting the therapeutic efficacy of Mgf

    Overcoming biological barriers BBB/BBTB by designing PUFA functionalised lipid-based nanocarriers for glioblastoma targeted therapy

    No full text
    A major obstacle for chemotherapeutics in Glioblastoma (GB) is to reach the tumour cells due to the presence of the blood-brain barrier (BBB) and chemoresistance of anticancer drugs. The present study reports two polyunsaturated fatty acids, gamma-linolenic acid (GLA) and alpha-linolenic acid (ALA) appended nanostructured lipid carriers (NLCs) of a CNS negative chemotherapeutic drug docetaxel (DTX) for targeted delivery to GB. The ligand appended DTX-NLCs demonstrated particle size ˂160 nm, PDI˂0.29 and negative surface charge. The successful linkage of GLA (41 %) and ALA (30 %) ligand conjugation to DTX- NLCs was confirmed by diminished surface amino groups on the NLCs, lower surface charge and FTIR profiling. Fluorophore labelled GLA-DTX-NLCs and ALA-DTX-NLCs permeated the in-vitro 3D BBB with Papp values of 1.8 × 10−3 and 1.9 × 10−3 cm/s respectively Following permeation, both formulations showed enhanced uptake by GB immortalised cells while ALA-DTX-NLCs showed higher uptake in patient-derived GB cells as evidenced in an in-vitro 3D blood brain tumour barrier (BBTB) model. Both surface functionalised formulations showed higher internalisation in GB cells as compared to bare DTX-NLCs. ALA-DTX-NLCs and GLA-DTX-NLCs showed 13.9-fold and 6.8-fold higher DTX activity respectively at 24 h as indicated by IC50 values when tested in patient-derived GB cells. ALA-DTX-NLCs displayed better efficacy than GLA-DTX-NLCs when tested against 3D tumour spheroids and patient-derived cells. These novel formulations will contribute widely to overcoming biological barriers for treating glioblastoma

    Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models

    No full text
    The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of −32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed high internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be the one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine
    corecore