6,513 research outputs found

    From solid solution to cluster formation of Fe and Cr in α\alpha-Zr

    Full text link
    To understand the mechanisms by which Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, a combination of experimental (atom probe tomography, x-ray diffraction and thermoelectric power measurements) and modelling (density functional theory) techniques are employed to investigate the non-equilibrium solubility and clustering of Fe and Cr in binary Zr alloys. Cr occupies both interstitial and substitutional sites in the {\alpha}-Zr lattice, Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of alloying concentration (in the dilute regime) is strongly anisotropic for Fe additions, expanding the cc-axis while contracting the aa-axis. Defect clusters are observed at higher solution concentrations, which induce a smaller amount of lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased solubility of defect clusters, the implications for irradiation induced microstructure changes in Zr alloys are discussed.Comment: 15 pages including figure, 9 figures, 2 tables. Submitted for publication in Acta Mater, Journal of Nuclear Materials (2015

    Russian approaches to energy security and climate change: Russian gas exports to the EU

    Get PDF
    The proposition that EU climate policy represents a threat to Russia’s gas exports to the EU, and therefore to Russia’s energy security, is critically examined. It is concluded that whilst the greater significance of climate-change action for Russian energy security currently lies not in Russia’s own emissions reduction commitments but in those of the EU, an even greater threat to Russia’s energy security is posed by the development of the EU internal gas market and challenges to Russia’s participation in that market. However, the coming decades could see Russia’s energy security increasingly influenced by climate-change action policies undertaken by current importers of Russian gas such as the EU, and potential importers such as China and India. The challenge for Russia will be to adapt to developments in energy security and climate-change action at the European and global levels

    Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    Get PDF
    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis

    Periosteum: biology, regulation, and response to osteoporosis therapies

    Get PDF
    Periosteum contains osteogenic cells that regulate the outer shape of bone and work in coordination with inner cortical endosteum to regulate cortical thickness and the size and position of a bone in space. Induction of periosteal expansion, especially at sites such as the lumbar spine and femoral neck, reduces fracture risk by modifying bone dimensions to increase bone strength. The cell and molecular mechanisms that selectively and specifically activate periosteal expansion, as well as the mechanisms by which osteoporosis drugs regulate periosteum, remain poorly understood. We speculate that an alternate strategy to protect human bones from fracture may be through targeting of the periosteum, either using current or novel agents. In this review, we highlight current concepts of periosteal cell biology, including their apparent differences from endosteal osteogenic cells, discuss the limited data regarding how the periosteal surface is regulated by currently approved osteoporosis drugs, and suggest one potential means through which targeting periosteum may be achieved. Improving our understanding of mechanisms controlling periosteal expansion will likely provide insights necessary to enhance current and develop novel interventions to further reduce the risk of osteoporotic fractures

    Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) impacts multiple organ systems including the circulatory, renal, nervous and musculoskeletal systems. In collagen-based tissues, one mechanism that may be responsible for detrimental mechanical impacts of T2D is the formation of advanced glycation end products (AGEs) leading to increased collagen stiffness and decreased toughness, resulting in brittle tissue behavior. The purpose of this study was to investigate tendon mechanical properties from normal and diabetic rats at two distinct length scales, testing the hypothesis that increased stiffness and strength and decreased toughness at the fiber level would be associated with alterations in nanoscale morphology and mechanics. Individual fascicles from female Zucker diabetic Sprague-Dawley (ZDSD) rats had no differences in fascicle-level mechanical properties but had increased material-level strength and stiffness versus control rats (CD). At the nanoscale, collagen fibril D-spacing was shifted towards higher spacing values in diabetic ZDSD fibrils. The distribution of nanoscale modulus values was also shifted to higher values. Material-level strength and stiffness from whole fiber tests were increased in ZDSD tails. Correlations between nanoscale and microscale properties indicate a direct positive relationship between the two length scales, most notably in the relationship between nanoscale and microscale modulus. These findings indicate that diabetes-induced changes in material strength and modulus were driven by alterations at the nanoscale

    A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover

    Get PDF
    This study addressed the effects of changes in trabecular microarchitecture induced by suppressed bone turnover—including changes to the remodeling space—on the trabecular bone strength–volume fraction characteristics independent of changes in tissue material properties. Twenty female beagle dogs, aged 1–2 years, were treated daily with either oral saline (n=10 control) or high doses of oral risedronate (0.5 mg/kg/day, n=10 suppressed) for a period of 1 year, the latter designed (and confirmed) to substantially suppress bone turnover. High-resolution micro-CT-based finite element models (18-μm voxel size) of canine trabecular bone cores (n=2 per vertebral body) extracted from the T-10 vertebrae were analyzed in both compressive and torsional loading cases. The same tissue-level material properties were used in all models, thus providing measures of tissue-normalized strength due only to changes in the microarchitecture. Suppressed bone turnover resulted in more plate-like architecture with a thicker and more dense trabecular structure, but the relationship between the microarchitectural parameters and volume fraction was unaltered (p>0.05). Though the suppressed group had a greater tissue-normalized strength as compared to the control group (p0.13) or torsion (p>0.09). In this high-density, non-osteoporotic animal model, the increases in tissue-normalized strength seen with suppression of bone turnover were entirely commensurate with increases in bone volume fraction and thus, no evidence of microarchitecture-related or “stress-riser” effects which may disproportionately affect strength were found

    Reference-Point Indentation Correlates with Bone Toughness Assessed Using Whole-Bone Traditional Mechanical Testing

    Get PDF
    Traditional bone mechanical testing techniques require excised bone and destructive sample preparation. Recently, a cyclic-microindentation technique, reference-point indentation (RPI), was described that allows bone to be tested in a clinical setting, permitting the analysis of changes to bone material properties over time. Because this is a new technique, it has not been clear how the measurements generated by RPI are related to the material properties of bone measured by standard techniques. In this paper, we describe our experience with the RPI technique, and correlate the results obtained by RPI with those of traditional mechanical testing, namely 3-point bending and axial compression. Using different animal models, we report that apparent bone material toughness obtained from 3-point bending and axial compression is inversely correlated with the indentation distance increase (IDI) obtained from RPI with r2 values ranging from 0.50 to 0.57. We also show that conditions or treatments previously shown to cause differences in toughness, including diabetes and bisphosphonate treatment, had significantly different IDI values compared to controls. Collectively these results provide a starting point for understanding how RPI relates to traditional mechanical testing results

    Molecular dynamic simulation on temperature evolution of SiC under directional microwave radiation

    Full text link
    Silicon carbide (SiC) is widely used as the substrate for high power electronic devices as well as susceptors for microwave (MW) heating. The dynamics of microwave interaction with SiC is not fully understood, especially at the material boundaries. In this paper, we used the molecular dynamics simulation method to study the temperature evolution during the microwave absorption of SiC under various amplitudes and frequencies of the microwave electric field. Directional MW heating of a SiC crystal slab bounded by surfaces along [100] crystallographic direction shows significantly faster melting when the field is applied parallel to the surface compared to when applied perpendicular

    Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions

    Get PDF
    Objectives: Changes in subchondral bone (SCB) and cross-talk with articular cartilage (AC) have been linked to osteoarthritis (OA). Using micro-computed tomography (micro-CT) this study: (1) examines changes in SCB architecture in a non-invasive loading mouse model in which focal AC lesions are induced selectively in the lateral femur, and (2) determines any modifications in the contralateral knee, linked to changes in gait, which might complicate use of this limb as an internal control. Methods: Right knee joints of CBA mice were loaded: once with 2weeks of habitual use (n=7), for 2weeks (n=8) or for 5weeks (n=5). Both left (contralateral) and right (loaded) knees were micro-CT scanned and the SCB and trabecular bone analysed. Gait analysis was also performed. Results: These analyses showed a significant increase in SCB thickness in the lateral compartments in joints loaded for 5weeks, which was most marked in the lateral femur; the contralateral non-loaded knee also showed transient SCB thickening (loaded once and repetitively). Epiphyseal trabecular bone BV/TV and trabecular thickness were also increased in the lateral compartments after 5 weeks of loading, and in all joint compartments in the contralateral knee. Gait analysis showed that applied loading only affected gait in the contralateral himd-limb in all groups of mice from the second week after the first loading episode. Conclusions: These data indicate a spatial link between SCB thickening and AC lesions following mechanical trauma, and the clear limitations associated with the use of contralateral joints as controls in such OA models, and perhaps in OA diagnosis

    Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body

    Get PDF
    The relative biomechanical effects of antiresorptive treatment on cortical thickness vs. trabecular bone microarchitecture in the spine are not well understood. To address this, T-10 vertebral bodies were analyzed from skeletally mature female beagle dogs that had been treated with oral saline (n=8 control) or a high dose of oral risedronate (0.5 mg/kg/day, n=9 RIS-suppressed) for 1 year. Two linearly elastic finite element models (36-μm voxel size) were generated for each vertebral body—a whole-vertebra model and a trabecular-compartment model—and subjected to uniform compressive loading. Tissue-level material properties were kept constant to isolate the effects of changes in microstructure alone. Suppression of bone turnover resulted in increased stiffness of the whole vertebra (20.9%, p=0.02) and the trabecular compartment (26.0%, p=0.01), while the computed stiffness of the cortical shell (difference between whole-vertebra and trabecular-compartment stiffnesses, 11.7%, p=0.15) was statistically unaltered. Regression analyses indicated subtle but significant changes in the relative structural roles of the cortical shell and the trabecular compartment. Despite higher average cortical shell thickness in RIS-suppressed vertebrae (23.1%, p=0.002), the maximum load taken by the shell for a given value of shell mass fraction was lower (p=0.005) for the RIS-suppressed group. Taken together, our results suggest that—in this canine model—the overall changes in the compressive stiffness of the vertebral body due to suppression of bone turnover were attributable more to the changes in the trabecular compartment than in the cortical shell. Such biomechanical studies provide an unique insight into higher-scale effects such as the biomechanical responses of the whole vertebra
    • …
    corecore