556 research outputs found

    Robustness of superconductivity to structural disorder in Sr0.3(NH2)y(NH3)1−yFe2Se2

    Get PDF
    The superconducting properties of a recently discovered high-Tc superconductor, Sr/ammonia-intercalated FeSe, have been measured using pulsed magnetic fields down to 4.2 K and muon spin spectroscopy down to 1.5 K. This compound exhibits intrinsic disorder resulting from random stacking of the FeSe layers along the c axis that is not present in other intercalates of the same family. This arises because the coordination requirements of the intercalated Sr and ammonia moieties imply that the interlayer stacking (along c) involves a translation of either a/2 or b/2 that locally breaks tetragonal symmetry. The result of this stacking arrangement is that the Fe ions in this compound describe a body-centered-tetragonal lattice in contrast to the primitive arrangement of Fe ions described in all other Fe-based superconductors. In pulsed magnetic fields, the upper critical field Hc2 was found to increase on cooling with an upward curvature that is commonly seen in type-II superconductors of a multiband nature. Fitting the data to a two-band model and extrapolation to absolute zero gave a maximum upper critical field μ0Hc2(0) of 33(2)T. A clear superconducting transition with a diamagnetic shift was also observed in transverse-field muon measurements at Tc≈36.3(2)K. These results demonstrate that robust superconductivity in these intercalated FeSe systems does not rely on perfect structural coherence along the c axis

    Static Partitioning vs Dynamic Sharing of Resources in Simultaneous MultiThreading Microarchitectures

    Full text link
    Simultaneous MultiThreading (SMT) achieves better system resource utilization and higher performance because it exploits Thread-Level Parallelism (TLP) in addition to "conventional" Instruction-Level Parallelism (ILP). Theoretically, system resources in every pipeline stage of an SMT microarchitecture can be dynamically shared. However, in commercial applications, all the major queues are statically partitioned. From an implementation point of view, static partitioning of resources is easier to implement and has a lower hardware overhead and power consumption. In this paper, we strive to quantitatively determine the trade-off between static partitioning and dynamic sharing. We find that static partitioning of either the instruction fetch queue (IFQ) or the reorder buffer (ROB) is not sufficient if implemented alone (3% and 9% performance decrease respectively in the worst case comparing with dynamic sharing), while statically partitioning both the IFQ and the ROB could achieve an average performance gain of 9% at least, and even reach 148% when running with floating-point benchmarks, when compared with dynamic sharing. We varied the number of functional units in our efforts to isolate the reason for this performance improvement. We found that static partitioning both queues outperformed all the other partitioning mechanisms under the same system configuration. This demonstrates that the performance gain has been achieved by moving from dynamic sharing to static partitioning of the system resources

    The architecture of the Gram-positive bacterial cell wall

    Get PDF
    The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics1,2. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor1,3. In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength4,5,6. Here we applied atomic force microscopy7,8,9,10,11,12 to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface13,14, providing information complementary to traditional structural biology approaches

    Women are more likely than men to blame structural factors for women's political under-representation: evidence from 27 countries

    Get PDF
    Over time, gender and politics research has made progress in identifying those factors that result in low numbers of women in political institutions and in making evidence-informed suggestions about how to ameliorate them. These factors include discrimination in party recruitment processes, male-dominated political culture and broader gender inequalities in society. In contrast, little is known about public opinion regarding these drivers of women's political under-representation, especially whether to who or what women assign blame for the under-representation of women in politics differs from men. This article provides the first discussion and analysis of blame assignment for women's numeric under-representation in politics. In doing so, it outlines and operationalises a framework that distinguishes between meritocratic explanations of women's under-representation, whereby the blame for women not holding political office in greater numbers is assigned to women themselves, and structural explanations, whereby social forces external to women are seen to result in their numeric under-representation. Cross-national data from 27 European countries is used to show that women are significantly more likely than men to assign blame for women's numeric under-representation to structural factors. The hierarchical nature of the dataset is exploited using multilevel models and significant differences in levels of structural blame assignment between countries is found as well as between-country variation in the probability of women assigning blame to structural explanations for women's under-representation. Finally, the category of structural explanations is disaggregated in order to assess their relative prominence and to provide strong corroborative evidence that women predominantly assign blame for women's under-representation to political culture over other structural blame factors. The article concludes with a discussion of the implications of the study's findings for policy makers contemplating the pursuit of gender equality policies aimed at increasing women's political representation and makes suggestions for the direction of future research in this area.</p

    Gut Dysbiosis in Cutaneous T-Cell Lymphoma Is Characterized by Shifts in Relative Abundances of Specific Bacterial Taxa and Decreased Diversity in More Advanced Disease

    Get PDF
    Background Cutaneous T-cell lymphoma (CTCL) patients often suffer from recurrent skin infections and profound immune dysregulation in advanced disease. The gut microbiome has been recognized to influence cancers and cutaneous conditions; however, it has not yet been studied in CTCL.ObjectivesTo investigate the gut microbiome in patients with CTCL and in healthy controls.MethodsA case-control study was conducted between January 2019 and November 2020 at Northwestern’s busy multidisciplinary CTCL clinic (Chicago, Illinois, USA) utilizing 16S ribosomal RNA gene amplicon sequencing and bioinformatics analyses to characterize the microbiota present in fecal samples of CTCL patients (n = 38) and age-matched healthy controls (n = 13) from the same geographical region.ResultsGut microbial α-diversity trended lower in patients with CTCL and was significantly lower in patients with advanced CTCL relative to controls (P = 0.015). No differences in β-diversity were identified. Specific taxa were significantly reduced in patient samples; significance was determined using adjusted P-values (q-values) that accounted for a false discovery rate threshold of 0.05. Significantly reduced taxa in patient samples included the phylum Actinobacteria (q = 0.0002), classes Coriobacteriia (q = 0.002) and Actinobacteria (q = 0.03), order Coriobacteriales (q = 0.003), and genus Anaerotruncus (q = 0.01). The families Eggerthellaceae (q = 0.0007) and Lactobacillaceae (q = 0.02) were significantly reduced in patients with high skin disease burden.ConclusionsGut dysbiosis can be seen in patients with CTCL compared to healthy controls and is pronounced in more advanced CTCL. The taxonomic shifts associated with CTCL are similar to those previously reported in atopic dermatitis and opposite those of psoriasis, suggesting microbial parallels to the immune profile and skin barrier differences between these conditions. These findings may suggest new microbial disease biomarkers and reveal a new angle for intervention

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS
    corecore