20 research outputs found

    RNA interference approaches for treatment of HIV-1 infection

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Anthrax Edema Toxin Modulates PKA- and CREB-Dependent Signaling in Two Phases

    Get PDF
    Background: Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMPdependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin. Methodology/Principal Findings: EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking. Conclusions/Significance: We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclea

    Progress toward curing HIV infection with hematopoietic cell transplantation

    No full text
    Lawrence D Petz,1 John C Burnett,2 Haitang Li,3 Shirley Li,3 Richard Tonai,1 Milena Bakalinskaya,4 Elizabeth J Shpall,5 Sue Armitage,6 Joanne Kurtzberg,7 Donna M Regan,8 Pamela Clark,9 Sergio Querol,10 Jonathan A Gutman,11 Stephen R Spellman,12 Loren Gragert,13 John J Rossi2 1StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 2Department of Molecular and Cellular Biology, Irell and Manella Graduate School of Biological Sciences, 3Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; 4CCR5-Δ32/Δ32 Research Department, StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 5Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 6MD Anderson Cord Blood Bank, Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 7Carolinas Cord Blood Bank, Duke University Medical Center, Durham, NC, USA; 8St Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA; 9Enhance Quality Consulting Inc., Oviedo, FL, USA; 10Cell Therapy Service and Cord Blood Bank, Banc de Sang i Teixits, Barcelona, Spain; 11BMT/Hematologic Malignancies, University of Colorado, Aurora, CO, USA; 12Immunobiology and Observational Research, CIBMTR, Minneapolis, MN, USA; 13National Marrow Donor Program/Be The Match, Minneapolis, MN, USA Abstract: HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-Δ32/Δ32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-Δ32/Δ32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-Δ32/Δ32 units or with genetically modified, human leukocyte antigen-matched cord blood. Keywords: curing HIV infection, hematopoietic cell transplantation, genetic modification of stem cells, CCR5 mutation, CCR5-Δ32/Δ32 cord blood inventor

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access

    Trauma of the Mediastinum

    No full text

    Monoclonal antibody therapy

    No full text

    Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies

    No full text
    BACKGROUND: We tested whether genetic factors distinctly contribute to either development of coronary atherosclerosis or, specifically, to myocardial infarction in existing coronary atherosclerosis. METHODS: We did two genome-wide association studies (GWAS) with coronary angiographic phenotyping in participants of European ancestry. To identify loci that predispose to angiographic coronary artery disease (CAD), we compared individuals who had this disorder (n=12,393) with those who did not (controls, n=7383). To identify loci that predispose to myocardial infarction, we compared patients who had angiographic CAD and myocardial infarction (n=5783) with those who had angiographic CAD but no myocardial infarction (n=3644). FINDINGS: In the comparison of patients with angiographic CAD versus controls, we identified a novel locus, ADAMTS7 (p=4\ub798 710(-13)). In the comparison of patients with angiographic CAD who had myocardial infarction versus those with angiographic CAD but no myocardial infarction, we identified a novel association at the ABO locus (p=7\ub762 710(-9)). The ABO association was attributable to the glycotransferase-deficient enzyme that encodes the ABO blood group O phenotype previously proposed to protect against myocardial infarction. INTERPRETATION: Our findings indicate that specific genetic predispositions promote the development of coronary atherosclerosis whereas others lead to myocardial infarction in the presence of coronary atherosclerosis. The relation to specific CAD phenotypes might modify how novel loci are applied in personalised risk assessment and used in the development of novel therapies for CAD. FUNDING: The PennCath and MedStar studies were supported by the Cardiovascular Institute of the University of Pennsylvania, by the MedStar Health Research Institute at Washington Hospital Center and by a research grant from GlaxoSmithKline. The funding and support for the other cohorts contributing to the paper are described in the webappendix

    Lasers and Coherent Light Sources

    No full text

    Magen

    No full text
    corecore