382 research outputs found

    Submarine groundwater discharge: an unseen yet potentially important coastal phenomenon

    Get PDF
    In collaboration with researchers from Florida State University, Florida Sea Grant introduces an important but poorly known topic: submarine groundwater discharge. Although nearly invisible, submarine groundwater discharge influences coastal systems. This brochure helps explain this important phenomenon. (8pp.

    Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects

    Get PDF
    The number of studies concerning Submarine Groundwater Discharge (SGD) grew quickly as we entered the twenty-first century. Many hydrological and oceanographic processes that drive and influence SGD were identified and characterized during this period. These processes included tidal effects on SGD, water and solute fluxes, biogeochemical transformations through the subterranean estuary, and material transport via SGD from land to sea. Here we compile and summarize the significant progress in SGD assessment methodologies, considering both the terrestrial and marine driving forces, and local as well as global evaluations of groundwater discharge with an emphasis on investigations published over the past decade. Our treatment presents the state-of-the-art progress of SGD studies from geophysical, geochemical, bio-ecological, economic, and cultural perspectives. We identify and summarize remaining research questions, make recommendations for future research directions, and discuss potential future challenges, including impacts of climate change on SGD and improved estimates of the global magnitude of SGD

    Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 109 (2008): 395-408, doi:10.1016/j.marchem.2007.09.001.We used naturally occurring radium isotopes as tracers of water exchange in Apalachicola Bay, a shallow coastal-plain estuary in northwestern Florida. The bay receives fresh water and radium from the Apalachicola River, and mixes with Gulf of Mexico waters through four inlets. We deployed moored buoys with attached Mn-fibers at several stations throughout the estuary during two summer and two winter periods. After deployment for at least one tidal cycle we measured the ratio of the two short-lived radium isotopes 223Ra (half-life = 11 d) and 224Ra (3.6 d) to estimate “radium ages” of the water in the bay. During our four seasonal deployments the river discharge ranged from 338 to 1016 m3 s- 1. According to our calculations the water turnover time in the bay during these samplings ranged from 6 to 12 days. Age contours in the bay showed that winds and tides as well as river discharge influence the water movement and the residence time of freshwater in the bay. We also calculated the mean age of river water in the bay which was between 5 to 9 days during the studied periods. We suggest that this approach can be used to quantify transport processes of dissolved substances in the bay. For example, soluble nutrient or pollutant transport rates from a point source could be examined. We conclude that the radium age technique is well suited for flushing rate calculations in river dominated shallow estuaries.Henrieta Dulaiova acknowledges support from the NOAA National Estuarine Research Reserve System’s Graduate Research Fellowship (Award # NA03NOS4200055). Scientific support for this research was also provided by grants from NOAA's Cooperative Institute for Coastal and Estuarine Environmental Technology, CICEET (02-606) and the National Science Foundation (OCE03-50514 and OCE05-20723)

    Performance of cages as large animal-exclusion devices in the deep sea

    Get PDF
    Sedimentary, deep-sea communities include megafaunal animals (e.g., sea cucumbers, brittle stars, crabs) and demersal fishes, collectively termed the large, motile epifauna (LME). Individuals of the LME are common, and their biomass approximates that of the macrofauna. Based on analogies with shallow-water animals, they are likely to be sources of mortality for the infauna and to create spatial and temporal heterogeneity in the community. Given present theories of deep-sea community organization, such effects could be important. Unfortunately, this hypothesis has not been tested because of the difficulty of conducting experiments in the deep sea and because tools for manipulating the LME have not been developed. We studied the suitability of exclusion cages for this purpose at 780 m depth in San Diego Trough. We placed 16 cages of two mesh sizes for 4.5 months over regions of the seafloor that appeared free of LME. Time-lapse photographs of a cage and a control plot coupled with observations of all cages at the end of the experiment indicated that small (1.27-cm × 1.27-cm square)-mesh cages were effective at excluding LME. Further, the cages were essentially free of cage artifacts that have been reported in shallow-water studies. Large, mobile and disruptive animals (e.g., fishes, crabs) did not establish long-term residence adjacent to or on the cages. Bio-fouling slightly reduced the open surface area of the cage mesh, potentially reducing flow through the cage, but the composition of surface sediments in terms of organic C and N, phytoplankton-derived pigments, and grain size was indistinguishable between cages and control areas. Activities of excess 234Th were significantly higher (average = 37%) inside of small-mesh cages, which might suggest enhanced particulate deposition inside cages. However, this measurement was an artifact of experimental manipulation. Particles that accumulated on the cage during the experiment were dislodged and settled to the seafloor when the cage was opened just prior to sampling. These particles would have been highly enriched in 234Th, and their inclusion in core samples artificially inflated the calculated sediment accumulation rates inside cages. Therefore, the cages performed well; they excluded the targeted LME without causing artifacts and thus should be useful for experimental study of a group of animals that may have substantial impact on the structure and organization of deep-sea communities

    A new perspective for assessing water transport and associated retention effects in a large reservoir

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 9642-9650, doi:10.1029/2018GL079687.Radioactive tracer techniques may be useful for assessing water transport and the overall effects of concurrent biogeochemical processes in river‐reservoir systems. In this study, we show that radium isotopes can assess the hydrodynamics and sediment/nutrient retention in the Xiaolangdi Reservoir, the largest impoundment along the Yellow River, China. Activity ratios of 224Ra/226Ra and 223Ra/226Ra were used for water mass age calculations in the riverine, transition, and lentic reaches of the reservoir. Water ages were combined with the length scale of three river‐reservoir zones to determine water transport rates of 3.6 ± 1.2, 1.3 ± 0.3, and 0.16 ± 0.14 km/day, respectively. Radium ages were also used to quantify the net retention of sediment and nutrients in different parts of the river‐reservoir system. Suspended sediment was removed at a rate of 1.4 ± 0.6 g/m3/day, mainly in the riverine zone. Nutrient dynamics were more complicated, with addition or removal at different rates within the three zones.Ministry of Education of the People's Republic of China Grant Number: MS2014ZGHY028; Qingdao National Laboratory for Marine Science and Technology Grant Number: 2016ASKJ02; National Science Foundation of China Grant Numbers: 41521064, 41876075, 41576075; Ministry of Science and Technology of the People's Republic of China Grant Number: 2016YFA06009022019-03-2

    ANALYSIS OF YELLOW RIVER MIXING PROCESSES INTO THE BO HAI SEA VIA BARIUM AND RADIUM ISOTOPES

    Get PDF
    The mixing rate of dissolved substances from the Yellow River into the Bohai Sea is an important parameter in understanding the nutrient input to the coastal ocean. We present an assessment of the mixing rates under different discharge patterns using naturally-occurring short-lived radium isotopes. Radium and salinity measurements were collected along transects through the Yellow River salinity gradient and into the coastal Bohai Sea during three field expeditions. Mixing rates varied between 5 and 18 km2/day and were strongly dependent on river discharge. The highest mixing rates are found just after periods of high discharge, while the lowest mixing rates occurred after periods of relatively low discharge

    DETERMINATION OF SUBMARINE GROUNDWATER DISCHARGE (SGD) VIA NATURAL RADIONUCLIDES IN A REGION NEAR THE MOUTH OF THE YELLOW RIVER

    Get PDF
    Naturally occurring radionuclides have been shown to be useful tracers of submarine groundwater discharge due to their high concentrations in groundwater and relatively low concentrations in surface seawater. We present here an assessment of SGD rates using 222Rn and Ra isotopes from an area of high SGD to the south of the Yellow River. The data were collected during a 24-hour stationary time series analysis in September 2006. Our results based on a radon mass balance model indicate average SGD rates of ~ 37 cm/day. Average rates based on short-lived radium isotopes are similar, at 40 and 37 cm/day for 223Ra and 22 Ra, respectively. While all of these estimates depend upon assumptions involving residence times and end-member values, the results are internally consistent and agree well with values reported for an automatic seepage meter deployed nearby (av= 44 cm/day)

    The Muon Anomalous Magnetic Moment: A Harbinger For "New Physics"

    Get PDF
    QED, Hadronic, and Electroweak Standard Model contributions to the muon anomalous magnetic moment, a_mu = (g_mu-2)/2, and their theoretical uncertainties are scrutinized. The status and implications of the recently reported 2.6 sigma experiment vs.theory deviation a_mu^{exp}-a_mu^{SM} = 426(165) times 10^{-11} are discussed. Possible explanations due to supersymmetric loop effects with m_{SUSY} \simeq 55 sqrt{tan beta} GeV, radiative mass mechanisms at the 1--2 TeV scale and other ``New Physics'' scenarios are examined.Comment: 24 page
    corecore