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Abstract 
The mixing rate of dissolved substances from the Yellow River into the Bohai Sea is an 
important parameter in understanding the nutrient input to the coastal ocean. We present an 
assessment of the mixing rates under different discharge patterns using naturally-occurring short
lived radium isotopes. Radium and salinity measurements were collected along transects through 
the Yellow River salinity gradient and into the coastal Bohai Sea during three field expeditions. 
Mixing rates varied between 5 and 18 krn2/day and were strongly dependent on river discharge. 
The highest mixing rates are found just after periods of high discharge, while the lowest mixing 
rates occurred after periods of relatively low discharge. 
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Introduction 
One of the key unknown aspects of the interaction between the Yell ow River and the Bohai Sea 
concerns the rate of mixing of dissolved river-borne substances. The spatial extent to which 
riverine-derived nutrients can impact the Bohai Sea depends heavily on the rate at which they are 
mixed away from the river. This may determine, for example, the residence time of nutrients 
within a particular region of the coastal ocean. Assessment of mixing is thus essential in order to 
understand the relative importance of Yellow River nutrients with respect to the recent nitrogen 
over-enrichment found in the Bohai Sea. 

The spatial extent of the mixing area of the Yellow River water can be assessed easily simply by 
mapping salinity in the coastal ocean. However, the incorporation of radioisotopes to this study 
adds a temporal component to the scope of riverine mixing. We employ the use of the short-lived 
radium isotopes, 224Ra (t112 = 3.66 days) and 223Ra (t112 = 11.54 days) to examine the mixing rates 
of these waters. 

Radium and its stable analog, barium, exhibit the same behavior in estuarine systems. In the 
purely freshwater areas of a river, they remain attached to suspended particles. However, once 
these particles encounter saline waters, the radium and barium are largely removed from the 
particles into solution via ion exchange processes (Hanor and Chan, 1977; Li and Chan, 1979; 
Coffey et al., 1997; Moore, 1997; Martin and Akber, 1999; Nozaki et al., 2001). This 
"desorption" process represents an important input of radium and barium to the coastal ocean. 

Methods 
Field expeditions were performed in September 2004, May 2005, and September 2006 to 
evaluate the influence of river discharge with these coastal mixing rates (Fig. 1 ). Radium 
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concentrations were measured using the delayed coincidence counting technique described by 

Moore and Arnold (1996) along transects from the Yellow River offshore to the Bohai Sea. 
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Fig. 1 Yellow River discharge since January 2004, with the three field sampling periods shown by the arrows. 

For calculating mixing rates, we followed the method established by Moore (2000). In short, 

plotting the natural logarithm of the radium isotope activity over the transect offshore produces a 

relationship fit by a straight line equation: 

m = {I vK. 
(1) 

where m is the slope of the best-fit line, Kh is the mixing coefficient with units of square distance 

per time, and 'A is the decay constant, 0.189 d- 1 for 224Ra and 0.060 d-1 for 223Ra. 

Results and Discussion 
A transect from the Yellow River estuary into the Bohai Sea (Fig. 2) shows that radium peaks 

within the estuary and decreases exponentially offshore. This decrease is due to a combination of 

radioactive decay and mixing and was modeled according to (1). Barium concentrations follow 

this same pattern, except its decrease is due only to mixing. Table 1 reports the calculated mixing 

rates for each of these sample periods as based on this data. The errors reported for each mixing 

rate are based on the uncertainty in the best-fit slope. For periods immediately following high 

discharges (i.e. September), the mixing rate is higher than that sampled in May after a period of 

low discharge. 

While derived from radium distribution, these results are essentially a gauge of relative water 

movement. As such, these mixing rates can be readily applied to any dissolved materials that are 

carried offshore within the river plume. However, particle settling, turbulent processes, and 

resuspension effects prevent these results from being practical to suspended sediments or 

particle-bound substances. 
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Fig. 2 Ra-224 concentration (circles) and salinity (line) along an offshore transect from the Yellow River. Data 
shown was collected in September 2006. Negative distances represent measurements within the river, whereas 
positive distances indicate offshore sample locations. 

The model applied to these data neglects the contribution of advective mixing processes 
to the total mixing, assuming that eddy diffusive mixing is the dominant factor. While tidally
averaged fluctuations of water mass movement within the estuary are minimal, their relative 
importance to the total mixing remains unknown. One future goal of this project is to assess the 
river plume advection contribution to the overall mixing rates. 

Average River Ra-224 Kh Ra-223 Kh Average Kh 
Discharge 

m3/s km2/d km2/d km2/d 

Sep 2004 1222 ± 897 16.9 ± 2.74 19.8 ± 2.58 18.4 ± 2.66 

May 2005 100 ± 16 4.93 ± 2.66 4.57 ± 1.30 4 .75 ± 1.98 

Sep 2006 779 ± 350 12.6 ± 4.64 13.7 ± 2.17 13.2±3.41 

Tab. l Offshore river water mixing coefficients (Kh) derived from Ra-224 and Ra-223 as well as the average values 
for the three sample trips. Uncertainties shown are based on the error in best-fit slope to the data. River discharge 
shown is a monthly average leading up to and including the period of the field trip. 

Conclusions 
Radium isotopes have proven to be useful tracers where the Yellow River plume water meets the 
Bohai Sea. Coastal mixing rates ranged between 5 and 18 km2/day for three different sampling 
periods. The data clearly indicate that the mixing rates vary directly with the average river 
discharge for the month leading up to the sampling period. These mixing rate results may be 
applicable to any dissolved substances introduced to the Bohai Sea from the Yellow River. 
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