1,961 research outputs found

    On the depolarization of discrete radio sources by faraday dispersion technical report no. 440

    Get PDF
    Discrete radio source depolarization by Faraday dispersio

    86 GHz Very Long Baseline Polarimetry of 3C273 and 3C279 with the Coordinated Millimeter VLBI Array

    Get PDF
    86 GHz Very Long Baseline Polarimetry probes magnetic field structures within the cores of Active Galactic Nuclei at higher angular resolutions and a spectral octave higher than previously achievable. Observations of 3C273 and 3C279 taken in April 2000 with the Coordinated Millimeter VLBI Array have resulted in the first total intensity (Stokes I) and linear polarization VLBI images reported of any source at 86 GHz. These results reveal the 86 GHz electric vector position angles within the jets of 3C273 and 3C279 to be orthogonal to each other, and the core of 3C273 to be unpolarized. If this lack of polarization is due to Faraday depolarization alone, the dispersion in rotation measure is >=90000 rad/m^2 for the core of 3C273.Comment: AASTeX v5.02; 10 pages; 4 figures; accepted for publication in the Astrophysical Journal Letter

    The COINS Sample - VLBA Identifications of Compact Symmetric Objects

    Get PDF
    We present results of multifrequency polarimetric VLBA observations of 34 compact radio sources. The observations are part of a large survey undertaken to identify CSOs Observed in the Northern Sky (COINS). Compact Symmetric Objects (CSOs) are of particular interest in the study of the physics and evolution of active galaxies. Based on VLBI continuum surveys of ~2000 compact radio sources, we have defined a sample of 52 CSOs and CSO candidates. In this paper, we identify 18 previously known CSOs, and introduce 33 new CSO candidates. We present continuum images at several frequencies and, where possible, images of the polarized flux density and spectral index distributions for the 33 new candidates and one previously known but unconfirmed source. We find evidence to support the inclusion of 10 of these condidates into the class of CSOs. Thirteen candidates, including the previously unconfirmed source, have been ruled out. Eleven sources require further investigation. The addition of the 10 new confirmed CSOs increases the size of this class of objects by 50%.Comment: 24 pages, incl 8 figures. Accepted for publication in ApJ. Figure quality degraded in the interests of space, full gzipped PS version also available at http://www.ee.nmt.edu/~apeck/papers

    Concurrent 43 and 86 GHz Very Long Baseline Polarimetry of 3C273

    Full text link
    We present sub-milliarcsecond resolution total intensity and linear polarization VLBI images of 3C273, using concurrent 43 and 86 GHz data taken with the Very Long Baseline Array in May 2002. The structure seen in the innermost jet suggest that we have fortuitously caught the jet in the act of changing direction. The polarization images confirm that the core is unpolarized (fractional polarization m < 1 %) at 86 GHz, but also show well ordered magnetic fields (m ~ 15 %) in the inner jet, at a projected distance of 2.3 pc from the core. In this strongly polarized region, the rotation measure changes across the jet by 4.2 x 10^{4} rad m^{-2} over an angular width of about 0.3 milliarcseconds. If the lack of polarization in the core is also attributed to a Faraday screen, then a rotation measure dispersion > 5.2 x 10^{4} rad m^{-2} must be present in or in front of that region. These are among the highest rotation measures reported so far in the nucleus of any active galaxy or quasar, and must occur outside (but probably close to) the radio emitting region. The transverse rotation measure gradient is in the same sense as that observed by Asada et al and by Zavala and Taylor at greater core distances. The magnitude of the transverse gradient decreases rapidly with distance down the jet, and appears to be variable.Comment: 4 pages, LaTeX, 3 postscript figures, submitted to Astrophysical Journal Letter

    Extragalactic Zeeman Detections in OH Megamasers

    Full text link
    We have measured the Zeeman splitting of OH megamaser emission at 1667 MHz from five (ultra)luminous infrared galaxies ([U]LIRGs) using the 305 m Arecibo telescope and the 100 m Green Bank Telescope. Five of eight targeted galaxies show significant Zeeman-splitting detections, with 14 individual masing components detected and line-of-sight magnetic field strengths ranging from ~0.5-18 mG. The detected field strengths are similar to those measured in Galactic OH masers, suggesting that the local process of massive star formation occurs under similar conditions in (U)LIRGs and the Galaxy, in spite of the vastly different large-scale environments. Our measured field strengths are also similar to magnetic field strengths in (U)LIRGs inferred from synchrotron observations, implying that milligauss magnetic fields likely pervade most phases of the interstellar medium in (U)LIRGs. These results provide a promising new tool for probing the astrophysics of distant galaxies.Comment: 32 pages, 14 figures, 8 tables. Accepted for publication in The Astrophysical Journal v680n2, June 20, 2008; corrected 2 typo

    Measurement of the Integrated Faraday Rotations of BL Lac Objects

    Full text link
    We present the results of multi-frequency polarization VLA observations of radio sources from the complete sample of northern, radio-bright BL Lac objects compiled by H. Kuhr and G. Schmidt. These were used to determine the integrated rotation measures of 18 objects, 15 of which had never been measured previously, which hindered analysis of the intrinsic polarization properties of objects in the complete sample. These measurements make it possible to correct the observed orientations of the linear polarizations of these sources for the effect of Faraday rotation. The most probable origin for Faraday rotation in these objects is the Galactic interstellar medium. The results presented complete measurements of the integrated rotation measures for all 34 sources in the complete sample of BL Lac objects.Comment: 9 pages, 7 figure

    A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN

    Full text link
    Results from a survey of the parsec scale Faraday rotation measure properties for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation measures for quasars vary from approximately 500 to several thousand radians per meter squared. Quasar jets have rotation measures which are typically 500 radians per meter squared or less. The cores and jets of the BL Lac objects have rotation measures similar to those found in quasar jets. The jets of radio galaxies exhibit a range of rotation measures from a few hundred radians per meter squared to almost 10,000 radians per meter squared for the jet of M87. Radio galaxy cores are generally depolarized, and only one of four radio galaxies (3C-120) has a detectable rotation measure in the core. Several potential identities for the foreground Faraday screen are considered and we believe the most promising candidate for all the AGN types considered is a screen in close proximity to the jet. This constrains the path length to approximately 10 parsecs, and magnetic field strengths of approximately 1 microGauss can account for the observed rotation measures. For 27 out of 34 quasars and BL Lacs their optically thick cores have good agreement to a lambda squared law. This requires the different tau = 1 surfaces to have the same intrinsic polarization angle independent of frequency and distance from the black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure

    ROSAT and ASCA observations of the Crab-Like Supernova Remnant N157B in the Large Magellanic Cloud

    Get PDF
    We report the results of ROSAT and ASCA X-ray observations of the supernova remnant N157B (or 30 Dor B, SNR 0539-69.1) in the Large Magellanic Cloud. For comparison, we also briefly describe the results on SNR 0540-69.3, the only confirmed Crab-like remnant in the Cloud. The X-ray emission from N157B can be decomposed into a bright comet-shaped feature, superimposed on a diffuse emission region of a dimension 20\sim 20 pc. The flat and nearly featureless spectrum of the remnant is distinctly different from those of young shell-like remnants, suggesting a predominantly Crab-like nature of N157B. Characterized by a power law with an energy slope 1.5\sim 1.5, the spectrum of N157B above 2\sim 2 keV is, however, considerably steeper than that of SNR 0540-69.3, which has a slope of 1.0\sim 1.0. At lower energies, the spectrum of N157B presents marginal evidence for emission lines, which if real most likely arise in hot gas of the diffuse emission region. The hot gas has a characteristic thermal temperature of 0.4-0.7 keV. No significant periodic signal is detected from N157B in the period range of 3×10320003 \times 10^{-3}-2000 s. The pulsed fraction is 9\lesssim 9% (99% confidence) in the 272-7 keV range. We discuss the nature of the individual X-ray components. In particular, we suggest that the synchrotron radiation of relativistic particles from a fast-moving (103kms1\sim 10^3 km s^{-1}) pulsar explains the size, morphology, spectrum, and energetics of the comet-shaped X-ray feature. We infer the age of the remnant as 5×103\sim 5 \times 10^3 yrs. The lack of radio polarization of the remnant may be due to Faraday dispersion by foreground \ion{H}{2} gas.Comment: To be published in The Astrophysical Journal, 21 pages, plus 11 images in the PS, GIF, or jpeg format. Postscript files of images are available at http://www.astro.nwu.edu/astro/wqd/paper/n157b

    A Radio Polarimetric Study of the Galactic Center Threads

    Get PDF
    Multi-frequency, polarimetric VLA observations of the non-thermal filaments (NTF's), G0.08+0.15, and G359.96+0.09, also known as the Northern and Southern Threads are presented at 20, 6, 3.6 and 2 cm, with high enough spatial resolution to be resolved for the first time at 6 and 3.6 cm. The 20 cm image reveals a wealth of new detail in the radio sources lying within the inner 60 pc of the Galaxy. The Southern Thread has a prominent split along its length, similar to splitting at the ends of previously studied NTF's. With resolutions as fine as 2'', the 3.6 and 6 cm images reveal a high degree of continuity and little substructure internal to the filament. The spectral index of the Northern Thread has been determined over a broad range of frequencies. Its flux density falls with frequency, alpha=-0.5 between 90 and 6 cm, and becomes much steeper (alpha=-2.0) between 6 and 2 cm. The spectral index does not vary significantly along the length of the Northern Thread, which implies either that the diffusion timescale for the emitting electrons is less than their synchrotron lifetime, or that the emitting electrons are reaccelerated continuously at multiple positions along the filament. Because of the lack of spectral index variation, we have not located the source of relativistic electrons. Polarization observations at 6 and 3.6 cm confirm the non-thermal nature of the emission from the Northern Thread. The fractional polarization in the Northern Thread reaches 70% in some regions, although the polarized emission is patchy. Large rotation measures (RM > 2000 rad/m2) have been observed with irregular variations across the filament.The intrinsic magnetic field in the Northern Thread is predominantly aligned along its long axis.Comment: 19 pages, incl. 24 figs; to appear in the Astrophysical Journa

    Evidence for Ordered Magnetic Fields in the Quasar Environment

    Get PDF
    At a distance of 20 pc from the purported supermassive black hole powering quasars, temperatures and densities are inferred from optical observations to be ~10**4 K and ~10**4 cm**-3. Here we present Very Long Baseline Interferometry radio observations revealing organized magnetic fields on the parsec scale in the hot plasma surrounding the quasar OQ172 (1442+101). These magnetic fields rotate the plane of polarization of the radio emission coming from the core and inner jet of the quasar. The derived rotation measure (RM) is 40,000 rad m**-2 in the rest frame of the quasar. Only 10 mas (a projected distance of 68 pc) from the nucleus the jet absolute values of RM fall to less than 100 rad m**-2.Comment: in press at ApJ Letters, 12 page LaTeX document includes 4 postscript figure
    corecore