125 research outputs found

    Hubble Space Telescope Imaging and Spectroscopy of the Sirius-Like Triple Star System HD 217411

    Full text link
    We present Hubble Space Telescope imaging and spectroscopy of HD 217411, a G3 V star associated with the extreme ultraviolet excess source (EUV 2RE J2300-07.0). This star is revealed to be a triple system with a G 3V primary (HD 217411 A) separated by ~1.1" from a secondary that is in turn composed of an unresolved K0 V star (HD 217411 Ba) and a hot DA white dwarf (HD 217411 Bb). The hot white dwarf dominates the UV flux of the system. However; it is in turn dominated by the K0 V component beyond 3000 {\AA}. A revised distance of 143 pc is estimated for the system. A low level photometric modulation having a period of 0.61 days has also been observed in this system along with a rotational velocity on the order of 60 km s-1 in the K0 V star. Together both observations point to a possible wind induced spin up of the K0 V star during the AGB phase of the white dwarf. The nature of all three components is discussed as are constraints on the orbits, system age and evolution.Comment: 11 pages, 6 figure

    From Algae to Angiosperms – Inferring the Phylogeny of Green Plants ( Viridiplantae ) from 360 Plastid Genomes

    Get PDF
    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. http://www.biomedcentral.com/1471-2148/14/2

    NGTS-4b: A sub-Neptune transiting in the desert

    Get PDF
    We report the discovery of NGTS-4b, a sub-Neptune-sized planet transiting a 13th magnitude K-dwarf in a 1.34 d orbit. NGTS-4b has a mass M = 20.6 ± 3.0 M⊕ and radius R = 3.18 ± 0.26 R⊕, which places it well within the so-called ‘Neptunian Desert’. The mean density of the planet (3.45 ± 0.95 g cm−3) is consistent with a composition of 100  per cent H2O or a rocky core with a volatile envelope. NGTS-4b is likely to suffer significant mass loss due to relatively strong EUV/X-ray irradiation. Its survival in the Neptunian desert may be due to an unusually high-core mass, or it may have avoided the most intense X-ray irradiation by migrating after the initial activity of its host star had subsided. With a transit depth of 0.13 ± 0.02 per cent, NGTS-4b represents the shallowest transiting system ever discovered from the ground, and is the smallest planet discovered in a wide-field ground-based photometric survey

    Spatial Structure and Collisionless Electron Heating in Balmer-dominated Shocks

    Full text link
    Balmer-dominated shocks in supernova remnants (SNRs) produce strong hydrogen lines with a two-component profile composed of a narrow contribution from cold upstream hydrogen atoms, and a broad contribution from hydrogen atoms that have undergone charge transfer reactions with hot protons. Observations of emission lines from edge-wise shocks in SNRs can constrain the gas velocity and collisionless electron heating at the shock front. Downstream hydrogen atoms engage in charge transfer, excitation and ionization reactions, defining an interaction region called the shock transition zone. The properties of hot hydrogen atoms produced by charge transfers (called broad neutrals) are critical for accurately calculating the structure and radiation from the shock transition zone. This paper is the third in a series describing the kinetic, fluid and emission properties of Balmer-dominated shocks, and is the first to properly treat the effect of broad neutral kinetics on shock transition zone structure. We use our models to extract shock parameters from observations of Balmer-dominated SNRs. We find that inferred shock velocities and electron temperatures are lower than those of previous calculations by <10% for v_s<1500 km/s, and by 10-30% for v_s>1500 km/s. This effect is primarily due to the fact that excitation by proton collisions and charge transfer to excited levels favor the high speed part of the neutral hydrogen velocity distribution. Our results have a strong dependence on the ratio of electron to proton temperatures, \beta=T_e/T_p, which allows us to construct a relation \beta(v_s) between the temperature ratio and shock velocity. We compare our calculations to previous results by Ghavamian et al. (2007).Comment: 41 pages, 15 figures, 2 tables. Improved comparison to previous results, added discussion, and incorporated referee's suggestions. Submitted to Ap

    Hubble Space Telescope Astrometry of the Procyon System

    Full text link
    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is ~2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.Comment: Accepted by Astrophysical Journa

    Simultaneous observations of HD 106315 with 11 identical telescopes

    Get PDF
    The Next Generation Transit Survey (NGTS) is a photometric survey for transiting exoplanets, consisting of 12 identical 0.2‐m telescopes. We report a measurement of the transit of HD 106315 c using a novel observing mode in which multiple NGTS telescopes observed the same target, with the aim of increasing the signal‐to‐noise ratio. Combining the data allows the robust detection of the transit, which has a depth less than 0.1%, rivaling the performance of much larger telescopes. We demonstrate the capability of NGTS to contribute to the follow‐up of K2 and Transiting Exoplanet Survey Satellite discoveries using this observing mode. In particular, NGTS is well‐suited to the measurement of shallow transits of bright targets. This is particularly important to improve orbital ephemerides of relatively long‐period planets, where only a small number of transits are observed from space

    From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

    Get PDF
    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. http://www.biomedcentral.com/1471-2148/14/2

    TESS Duotransit Candidates from the Southern Ecliptic Hemisphere

    Full text link
    Discovering transiting exoplanets with long orbital periods allows us to study warm and cool planetary systems with temperatures similar to the planets in our own Solar system. The TESS mission has photometrically surveyed the entire Southern Ecliptic Hemisphere in Cycle 1 (August 2018 - July 2019), Cycle 3 (July 2020 - June 2021) and Cycle 5 (September 2022 - September 2023). We use the observations from Cycle 1 and Cycle 3 to search for exoplanet systems that show a single transit event in each year - which we call duotransits. The periods of these planet candidates are typically in excess of 20 days, with the lower limit determined by the duration of individual TESS observations. We find 85 duotransit candidates, which span a range of host star brightnesses between 8 < TmagT_{mag} < 14, transit depths between 0.1 per cent and 1.8 per cent, and transit durations between 2 and 10 hours with the upper limit determined by our normalisation function. Of these candidates, 25 are already known, and 60 are new. We present these candidates along with the status of photometric and spectroscopic follow-up.Comment: 25 pages, 16 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    Scintillation-limited photometry with the 20-cm NGTS telescopes at Paranal Observatory

    Get PDF
    Ground-based photometry of bright stars is expected to be limited by atmospheric scintillation, although in practice observations are often limited by other sources of systematic noise. We analyse 122 nights of bright star (Gmag ≲ 11.5) photometry using the 20-cm telescopes of the Next-Generation Transit Survey (NGTS) at the Paranal Observatory in Chile. We compare the noise properties to theoretical noise models and we demonstrate that NGTS photometry of bright stars is indeed limited by atmospheric scintillation. We determine a median scintillation coefficient at the Paranal Observatory of CY=1.54⁠, which is in good agreement with previous results derived from turbulence profiling measurements at the observatory. We find that separate NGTS telescopes make consistent measurements of scintillation when simultaneously monitoring the same field. Using contemporaneous meteorological data, we find that higher wind speeds at the tropopause correlate with a decrease in long-exposure (t = 10 s) scintillation. Hence, the winter months between June and August provide the best conditions for high-precision photometry of bright stars at the Paranal Observatory. This work demonstrates that NGTS photometric data, collected for searching for exoplanets, contains within it a record of the scintillation conditions at Paranal

    Multiwavelength observations of the EUV variable metal-rich white dwarf GD 394

    Get PDF
    We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15 d periodicity with a 25 per cent amplitude, hypothesized to be due to metals in a surface accretion spot. We obtained phase resolved HST/Space Telescope Imaging Spectrograph high resolution far-ultraviolet spectra of GD394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate, and radial velocity of GD394 constant over the observed time-scales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high ionisation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf.European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013 / ERC Grant) [320964]; Leverhulme Trust Research Project Grant; NASA [NAS 5-26555]; NASA through a Space Telescope Science Institute [13719]; W. M. Keck FoundationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore