1,447 research outputs found
“Live Sun Smart!” Testing the effectiveness of a sun safety program for middle schoolers
Background: Skin cancer is a well-recognized public health issue, and primary prevention is the most effective strategy for reducing skin cancer risk. The current recommendations are that behavioral counseling for sun safety measures is most beneficial and effective for children and adolescents and that targeting this population at primary and middle schools is the ideal intervention strategy to increase sun-protective behaviors and reduce UV exposure, sunburn incidence, and formation of new moles. Numerous studies on the effectiveness of school-based sun safety interventions among elementary and middle school students have shown an increase in sun safety knowledge, attitudes, and behaviors following the intervention. Objective: To conduct a pilot feasibility study of “Live Sun Smart!,” (LSS) a school-based, multicomponent, interactive sun safety presentation, at changing sun safety knowledge, attitudes, and behaviors among middle school students. Methods: A non-randomized, single-group pretest-posttest interventional pilot study of the LSS program among children enrolled in grade 6. Results: After exposure to LSS, participants were more likely to give correct answers to knowledge-based sun safety questions and to report negative attitudes toward tanning. Minimal and not significant changes were found in self-reported sun safety behaviors, though students did report an intention to change behaviors following the intervention. Participants were satisfied with the program and believed it increased their sun safety knowledge. Conclusion: Live Sun Smart! appears to be an effective school-based, multicomponent sun safety program for improving sun safety knowledge and attitudes toward tanning among middle school students in this initial test of it. The strengths and weaknesses of this pilot study have implications for future research
A new density variance - Mach number relation for subsonic and supersonic, isothermal turbulence
The probability density function (PDF) of the gas density in subsonic and
supersonic, isothermal, driven turbulence is analyzed with a systematic set of
hydrodynamical grid simulations with resolutions up to 1024^3 cells. We
performed a series of numerical experiments with root mean square (r.m.s.) Mach
number M ranging from the nearly incompressible, subsonic (M=0.1) to the highly
compressible, supersonic (M=15) regime. We study the influence of two extreme
cases for the driving mechanism by applying a purely solenoidal
(divergence-free) and a purely compressive (curl-free) forcing field to drive
the turbulence. We find that our measurements fit the linear relation between
the r.m.s. Mach number and the standard deviation of the density distribution
in a wide range of Mach numbers, where the proportionality constant depends on
the type of the forcing. In addition, we propose a new linear relation between
the standard deviation of the density distribution and the standard deviation
of the velocity in compressible modes, i.e. the compressible component of the
r.m.s. Mach number. In this relation the influence of the forcing is
significantly reduced, suggesting a linear relation between the standard
deviation of the density distribution and the standard deviation of the
velocity in compressible modes, independent of the forcing, ranging from the
subsonic to the supersonic regime.Comment: 8 pages,6 figures, The Astrophysical Journal (submitted
Conceptual design of the MHD Engineering Test Facility
The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified
Advanced Diagnostics for the Study of Linearly Polarized Emission. II: Application to Diffuse Interstellar Radio Synchrotron Emission
Diagnostics of polarized emission provide us with valuable information on the
Galactic magnetic field and the state of turbulence in the interstellar medium,
which cannot be obtained from synchrotron intensity alone. In Paper I (Herron
et al. 2017b), we derived polarization diagnostics that are rotationally and
translationally invariant in the - plane, similar to the polarization
gradient. In this paper, we apply these diagnostics to simulations of ideal
magnetohydrodynamic turbulence that have a range of sonic and Alfv\'enic Mach
numbers. We generate synthetic images of Stokes and for these
simulations, for the cases where the turbulence is illuminated from behind by
uniform polarized emission, and where the polarized emission originates from
within the turbulent volume. From these simulated images we calculate the
polarization diagnostics derived in Paper I, for different lines of sight
relative to the mean magnetic field, and for a range of frequencies. For all of
our simulations, we find that the polarization gradient is very similar to the
generalized polarization gradient, and that both trace spatial variations in
the magnetoionic medium for the case where emission originates within the
turbulent volume, provided that the medium is not supersonic. We propose a
method for distinguishing the cases of emission coming from behind or within a
turbulent, Faraday rotating medium, and a method to partly map the rotation
measure of the observed region. We also speculate on statistics of these
diagnostics that may allow us to constrain the physical properties of an
observed turbulent region.Comment: 34 pages, 25 figures, accepted for publication in Ap
The orbits of the quadruple star system 88 Tau A from PHASES differential astrometry and radial velocity
We have used high precision differential astrometry from the Palomar
High-precision Astrometric Search for Exoplanet Systems (PHASES) project and
radial velocity measurements covering a time-span of 20 years to determine the
orbital parameters of the 88 Tau A system. 88 Tau is a complex hierarchical
multiple system comprising a total of six stars; we have studied the brightest
4, consisting of two short-period pairs orbiting each other with an 18-year
period. We present the first orbital solution for one of the short-period
pairs, and determine the masses of the components and distance to the system to
the level of a few percent. In addition, our astrometric measurements allow us
to make the first determination of the mutual inclinations of the orbits. We
find that the sub-systems are not coplanar.Comment: Corrected Author Ordering; 12 Pages, Accepted for publication in Ap
Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation
Background Age is an important risk factor for perioperative cerebral complications such as stroke, postoperative cognitive dysfunction, and delirium. We explored the hypothesis that intraoperative cerebrovascular autoregulation is less efficient and brain tissue oxygenation lower in elderly patients, thus, increasing the vulnerability of elderly brains to systemic insults such as hypotension. Methods We monitored intraoperative cerebral perfusion in 50 patients aged 18-40 and 77 patients >65 yr at two Swiss university hospitals. Mean arterial pressure (MAP) was measured continuously using a plethysmographic method. An index of cerebrovascular autoregulation (Mx) was calculated based on changes in transcranial Doppler flow velocity due to changes in MAP. Cerebral oxygenation was assessed by the tissue oxygenation index (TOI) using near-infrared spectroscopy. End-tidal CO2, O2, and sevoflurane concentrations and peripheral oxygen saturation were recorded continuously. Standardized anaesthesia was administered in all patients (thiopental, sevoflurane, fentanyl, atracurium). Results Autoregulation was less efficient in patients aged >65 yr [by 0.10 (se 0.04; P=0.020)] in a multivariable linear regression analysis. This difference was not attributable to differences in MAP, end-tidal CO2, or higher doses of sevoflurane. TOI was not significantly associated with age, sevoflurane dose, or Mx but increased with increasing flow velocity [by 0.09 (se 0.04; P=0.028)] and increasing MAP [by 0.11 (se 0.05; P=0.043)]. Conclusions Our results do not support the hypothesis that older patients' brains are more vulnerable to systemic insults. The difference of autoregulation between the two groups was small and most likely clinically insignifican
The Supersonic Project: The Early Evolutionary Path of Supersonically Induced Gas Objects
Supersonically induced gas objects (SIGOs) are a class of early universe objects that have gained attention as a potential formation route for globular clusters. SIGOs have recently begun to be studied in the context of molecular hydrogen cooling, which is key to characterizing their structure and evolution. Studying the population-level properties of SIGOs with molecular cooling is important for understanding their potential for collapse and star formation, and for addressing whether SIGOs can survive to the present epoch. Here, we investigate the evolution of SIGOs before they form stars, using a combination of numerical and analytical analysis. We study timescales important to the evolution of SIGOs at a population level in the presence of molecular cooling. Revising the previous formulation for the critical density of collapse for SIGOs allows us to show that their prolateness tends to act as an inhibiting factor to collapse. We find that simulated SIGOs are limited by artificial two-body relaxation effects that tend to disperse them. We expect that SIGOs in nature will be longer lived compared to our simulations. Further, the fall-back timescale on which SIGOs fall into nearby dark matter halos, potentially producing a globular-cluster-like system, is frequently longer than their cooling timescale and the collapse timescale on which they shrink through gravity. Therefore, some SIGOs have time to cool and collapse outside of halos despite initially failing to exceed the critical density. From this analysis we conclude that SIGOs should form stars outside of halos in nonnegligible stream velocity patches in the universe
- …