902 research outputs found

    The Non-homogeneous Poisson Process for Fast Radio Burst Rates

    Get PDF
    This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model changes in the rate as a function of both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patterns and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 586.88 events per sky per day above a flux of 1 Jy (95\% CI: 271.86, 923.72) and a flux power-law index of 0.91 (95\% CI: 0.57, 1.25). Our rate is lower than other published rates, but consistent with the rate given in Champion et al. 2016.Comment: 19 pages, 2 figure

    The Properties of Brightest Cluster Galaxies in X-Ray Selected Clusters

    Get PDF
    We present the K-band Hubble diagram for 162 brightest cluster galaxies (BCGs) in X-ray selected clusters, 0.01<z<0.83. The sample incorporates that of Burke, Collins, & Mann (2000) and includes additional infrared data from the 2MASS extended source catalogue. We show that below z=0.1 the BCGs show no correlation with their environment, however, above z=0.1 BCGs in more X-ray luminous clusters are more uniform in their photometric properties. This suggests that there may be two populations of BCGs which have different evolutionary histories.Comment: 2 pages, to appear in the proceedings of the Sesto 2001 conference on tracing cosmic evolution with galaxy cluster

    The Enantioselective Construction of Tetracyclic Diterpene Skeletons with Friedel-Crafts Alkylation and Palladium-catalyzed Cycloalkenylation Reactions

    Get PDF
    Due to the profound extent to which natural products inspire medicinal chemists in drug discovery, there is demand for innovative syntheses of these often complex materials. This article describes the synthesis of tricarbocyclic natural product architectures through an extension of the enantioselective Birch-Cope sequence with intramolecular Friedel-Crafts alkylation reactions. Additionally, palladium-catalyzed enol silane cycloalkenylation of the tricarbocyclic structures afforded the challenging bicyclo[3.2.1]octane C/D ring system found in the gibberellins and the ent-kauranes, two natural products with diverse medicinal value. In the case of the ent-kaurane derivative, an unprecedented alkene rearrangement converted four alkene isomers to one final product

    CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2°C

    Get PDF
    Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2°C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5°C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2°C. This value is 60 to 100 Gt C less for a 1.5°C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios

    Evaluation of soil carbon simulation in CMIP6 Earth system models

    Get PDF
    The response of soil carbon represents one of the key uncertainties in future climate change. The ability of Earth system models (ESMs) to simulate present-day soil carbon is therefore vital for reliably estimating global carbon budgets required for Paris Agreement targets. In this study CMIP6 ESMs are evaluated against empirical datasets to assess the ability of each model to simulate soil carbon and related controls: net primary productivity (NPP) and soil carbon turnover time (Ï„s). Comparing CMIP6 with the previous generation of models (CMIP5), a lack of consistency in modelled soil carbon remains, particularly the underestimation of northern high-latitude soil carbon stocks. There is a robust improvement in the simulation of NPP in CMIP6 compared with CMIP5; however, an unrealistically high correlation with soil carbon stocks remains, suggesting the potential for an overestimation of the long-term terrestrial carbon sink. Additionally, the same improvements are not seen in the simulation of Ï„s. These results suggest that much of the uncertainty associated with modelled soil carbon stocks can be attributed to the simulation of below-ground processes, and greater emphasis is required on improving the representation of below-ground soil processes in future developments of models. These improvements would help to reduce the uncertainty in projected carbon release from global soils under climate change and to increase confidence in the carbon budgets associated with different levels of global warming.</p

    A Millisecond Interferometric Search for Fast Radio Bursts with the Very Large Array

    Full text link
    We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely localize an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc/cm3. No transients were detected in observations of high Galactic latitude fields taken from September 2013 though October 2014. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy/beam (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a Euclidean flux distribution, the VLA rate limit is inconsistent with the published rate of Thornton et al. We recalculate previously published rates with a homogeneous consideration of the effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This revises the FRB rate downward and shows that the VLA observations had a roughly 60% chance of detecting a typical FRB and that a 95% confidence constraint would require roughly 500 hours of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient.Comment: Submitted to ApJ. 13 pages, 9 figure
    • …
    corecore