153 research outputs found
On divergent 3-vertices in noncommutative SU(2)gauge theory
We analyze divergencies in 2-point and 3-point functions for noncommutative
-expanded SU(2)-gauge theory with massless fermions. We show that,
after field redefinition and renormalization of couplings, one divergent term
remains.Comment: 7 page
Non-renormalizability of noncommutative SU(2) gauge theory
We analyze the divergent part of the one-loop effective action for the
noncommutative SU(2) gauge theory coupled to the fermions in the fundamental
representation. We show that the divergencies in the 2-point and the 3-point
functions in the -linear order can be renormalized, while the
divergence in the 4-point fermionic function cannot.Comment: 15 pages, results presented at ESI 2d dilaton gravity worksho
Near-extremal and extremal quantum-corrected two-dimensional charged black holes
We consider charged black holes within dilaton gravity with
exponential-linear dependence of action coefficients on dilaton and minimal
coupling to quantum scalar fields. This includes, in particular, CGHS and RST
black holes in the uncharged limit. For non-extremal configuration quantum
correction to the total mass, Hawking temperature, electric potential and
metric are found explicitly and shown to obey the first generalized law. We
also demonstrate that quantum-corrected extremal black holes in these theories
do exist and correspond to the classically forbidden region of parameters in
the sense that the total mass ( is a charge). We show that in
the limit (where is the Hawking temperature) the mass and
geometry of non-extremal configuration go smoothly to those of the extremal
one, except from the narrow near-horizon region. In the vicinity of the horizon
the quantum-corrected geometry (however small quantum the coupling parameter
would be) of a non-extremal configuration tends to not the
quantum-corrected extremal one but to the special branch of solutions with the
constant dilaton (2D analog of the Bertotti-Robinson metric) instead.
Meanwhile, if exactly, the near-extremal configuration tends to the
extremal one. We also consider the dilaton theory which corresponds classically
to the spherically-symmetrical reduction from 4D case and show that for the
quantum-corrected extremal black hole .Comment: 25 pages. Typos corrected. To appear in Class. Quant. Gra
The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts
We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells
The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts
We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells
Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients
The abilities of chemokines in orchestrating cellular migration are utilised by different (patho-)biological networks including malignancies. However, except for CXCR4/CXCL12, little is known about the relation between tumour-related chemokine expression and the development and progression of solid tumours like breast cancer. In this study, microarray analyses revealed the overexpression of chemokine CXCL13 in breast cancer specimens. This finding was confirmed by real-time polymerase chain reaction in a larger set of samples (n=34) and cell lines, and was validated on the protein level performing Western blot, ELISA, and immunohistochemistry. Levels of CXCR5, the receptor for CXCL13, were low in malignant and healthy breast tissues, and surface expression was not detected in vitro. However, we observed a strong (P=0.0004) correlation between the expressions of CXCL13 and CXCR5 in breast cancer tissues, indicating a biologically relevant role of CXCR5 in vivo. Finally, we detected significantly elevated serum concentrations of CXCL13 in patients with metastatic disease (n=54) as compared with controls (n=44) and disease-free patients (n=48). In conclusion, CXCL13 is overexpressed within breast cancer tissues, and increased serum levels of this cytokine can be found in breast cancer patients with metastatic disease pointing to a role of CXCL13 in the progression of breast cancer, suggesting that CXCL13 might serve as a useful therapeutic target and/or diagnostic marker in this malignancy
Evaluation of sesamum gum as an excipient in matrix tablets
In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated
- …