16 research outputs found

    Monochromatic neutrino beams

    Get PDF
    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [Ue3] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [Ue3] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

    Detecting transient gravitational waves in non-Gaussian noise with partially redundant analysis methods

    Get PDF
    There is a broad class of astrophysical sources that produce detectable, transient, gravitational waves. Some searches for transient gravitational waves are tailored to known features of these sources. Other searches make few assumptions about the sources. Typically events are observable with multiple search techniques. This work describes how to combine the results of searches that are not independent, treating each search as a classifier for a given event. This will be shown to improve the overall sensitivity to gravitational-wave events while directly addressing the problem of consistent interpretation of multiple trials.Comment: 11 pages, 5 figure

    Superbeam studies at CERN

    Get PDF
    A conventional low-energy neutrino beam of great intensity could be produced by the Super Proton Linac at CERN as a first stage of a Neutrino Factory. Water Cherenkov and liquid scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters Δmatm2, θ23 and measure or severely constrain θ13. It is also shown that a very large water detector could eventually observe leptonic CP violation

    Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

    Get PDF
    We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases the likelihood ratio statistic results in an improved analysis.Comment: 10 pages, 6 figure

    Image processing tools for the validation of CryoEM maps

    Get PDF
    The number of maps deposited in public databases (Electron Microscopy Data Bank, EMDB) determined by cryo-electron microscopy has quickly grown in recent years. With this rapid growth, it is critical to guarantee their quality. So far, map validation has primarily focused on the agreement between maps and models. From the image processing perspective, the validation has been mostly restricted to using two half-maps and the measurement of their internal consistency. In this article, we suggest that map validation can be taken much further from the point of view of image processing if 2D classes, particles, angles, coordinates, defoci, and micrographs are also provided. We present a progressive validation scheme that qualifies a result validation status from 0 to 5 and offers three optional qualifiers (A, W, and O) that can be added. The simplest validation state is 0, while the most complete would be 5AWO. This scheme has been implemented in a website https://biocomp.cnb.csic.es/EMValidationService/ to which reconstructed maps and their ESI can be uploaded

    A Monochromatic Neutrino Beam to Obtain U(e3) and the CP Phase

    Get PDF
    The goal for future neutrino facilities is the determination of the [Ue3] mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam based on the recent discovery of nuclei that decay fast through electron capture is discussed. The boost of such radioactive ions will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We show that the capacity of such a facility to discover new physics is impressive, so that the principle of energy dependence in the oscillation probability of the νe→νμ channel is operational to separate out the two parameters of the mixing θ13 and of the CP-violating phase δ
    corecore