48 research outputs found

    Additive Manufacturing of Fe-Mn-Si-Based Shape Memory Alloys: State of the Art, Challenges and Opportunities

    Get PDF
    Additive manufacturing (AM) constitutes the new paradigm in materials processing and its use on metals and alloys opens new unforeseen possibilities, but is facing several challenges regarding the design of the microstructure, which is particularly awkward in the case of functional materials, like shape memory alloys (SMA), as they require a robust microstructure to withstand the constraints appearing during their shape change. In the present work, the attention is focused on the AM of the important Fe-Mn-Si-based SMA family, which is attracting a great technological interest in many industrial sectors. Initially, an overview on the design concepts of this SMA family is offered, with special emphasis to the problems arising during AM. Then, such concepts are considered in order to experimentally develop the AM production of the Fe-20Mn-6Si-9Cr-5Ni (wt%) SMA through laser powder bed fusion (LPBF). The complete methodology is approached, from the gas atomization of powders to the LPBF production and the final thermal treatments to functionalize the SMA. The microstructure is characterized by scanning and transmission electron microscopy after each step of the processing route. The reversibility of the ε martensitic transformation and its evolution on cycling are studied by internal friction and electron microscopy. An outstanding 14% of fully reversible thermal transformation of ε martensite is obtained. The present results show that, in spite of the still remaining challenges, AM by LPBF offers a good approach to produce this family of Fe-Mn-Si-based SMA, opening new opportunities for its applications.This research was supported by the Industry Department of the Basque Government through the ELKARTEK-MINERVA (KK-2022/000082) project, and also from the GIU-021/24 from the University of the Basque Country UPV/EHU. This work made use of the electron microscopes installed at the General Service of Electron Microscopy of Materials, of the SGIKER—UPV/EHU, and the Zeiss at LORTEK technology center. Lucía Del-Río acknowledges the Pre-Doctoral grant (PRE_2022_1_0109) from the Education Department of the Basque Government

    Quality assessment of a large multi-center flow cytometric dataset of acute myeloid leukemia patients—A EuroFlow study

    Get PDF
    Flowcytometric analysis allows for detailed identification and characterization of large numbers of cells in blood, bone marrow, and other body fluids and tissue samples and therefore contributes to the diagnostics of hematological malignancies. Novel data analysis tools allow for multidimensional analysis and comparison of patient samples with reference databases of normal, reactive, and/or leukemia/lymphoma patient samples. Building such reference databases requires strict quality assessment (QA) procedures. Here, we compiled a dataset and developed a QA methodology of the EuroFlow Acute Myeloid Leukemia (AML) database, based on the eight-color EuroFlow AML panel consisting of six different antibody combinations, including four backbone markers. In total, 1142 AML cases and 42 normal bone marrow samples were included in this analysis. QA was performed on 803 AML cases using multidimensional analysis of backbone markers, as well as tube-specific markers, and data were compared using classical analysis employing median and peak expression values. Validation of the QA procedure was performed by re-analysis of >300 cases and by running an independent cohort of 339 AML cases. Initial evaluation of the final cohort confirmed specific immunophenotypic patterns in AML subgroups; the dataset therefore can reliably be used for more detailed exploration of the immunophenotypic variability of AML. Our data show the potential pitfalls and provide possible solutions for constructing large flowcytometric databases. In addition, the provided approach may facilitate the building of other databases and thereby support the development of novel tools for (semi)automated QA and subsequent data analysis.The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as a Specific Targeted Research Project (STREP). The EuroFlow Consortium is part of the European Scientific Foundation for Hemato Oncology (ESLHO), a Scientific Working Group (SWG) of the European Hematology Association (EHA). S.M. was supported by Acción Estratégica en Salud (AES) (Grant PI21_01115) and the grant of CIBERONC of the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain and FONDOS FEDER (no. CB16/12/00400)

    Reference Values to Assess Hemodilution and Warn of Potential False-Negative Minimal Residual Disease Results in Myeloma

    Get PDF
    This article belongs to the Special Issue Advances in Multiple Myeloma Research and Treatment.[Simple Summary] Although the majority of patients with myeloma who achieve undetectable minimal residual disease show prolonged survival, some of them relapse shortly afterwards. False-negative results due to hemodiluted bone marrow samples could explain this inconsistency, but there is no guidance on how to evaluate them. We analyzed three cell populations normally absent in peripheral blood in 1404 aspirates obtained in numerous disease settings and in 85 healthy adults. Pairwise comparisons according to age and treatment showed significant variability, thus suggesting that hemodilution should be preferably evaluated with references obtained after receiving identical regimens. Leveraging the minimal residual disease results from 118 patients, we showed that a comparison with age-matched healthy adults could also inform on potential hemodilution. Our study supports the routine assessment of bone marrow cellularity to evaluate hemodilution, using as reference values either treatment-specific or from healthy adults if the former are unavailable.[Abstract] Background: Whereas, in most patients with multiple myeloma (MM), achieving undetectable MRD anticipates a favorable outcome, some others relapse shortly afterwards. Although one obvious explanation for this inconsistency is the use of nonrepresentative marrow samples due to hemodilution, there is no guidance on how to evaluate this issue. Methods: Since B-cell precursors, mast cells and nucleated red blood cells are normally absent in peripheral blood, we analyzed them in 1404 bone marrow (BM) aspirates obtained in numerous disease settings and in 85 healthy adults (HA). Results: First, we confirmed the systematic detection of the three populations in HA, as well as the nonreduced numbers with aging. Pairwise comparisons between HA and MM patients grouped according to age and treatment showed significant variability, suggesting that hemodilution should be preferably evaluated with references obtained from patients treated with identical regimens. Leveraging the MRD results from 118 patients, we showed that a comparison with HA of similar age could also inform on potential hemodilution. Conclusions: Our study supports the routine assessment of BM cellularity to evaluate hemodilution, since reduced BM-specific cell types as compared to reference values (either treatment-specific or from HA if the former are unavailable) could indicate hemodilution and a false-negative MRD result.This study was supported by grants from the Centro de Investigación Biomédica en Red—Área de Oncología—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00400, CB16/12/00233 and CB16/12/00284); Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria and co-financed by FEDER funds (FIS No. PI15/01956, PI15/02049, PI15/02062, PI18/01709, PI18/01673 and PI19/01451); the Cancer Research UK (C355/A26819), FCAECC and AIRC under the Accelerator Award Programme (EDITOR); the Black Swan Research Initiative of the International Myeloma Foundation and the European Research Council (ERC) 2015 Starting Grant (Contract 680200 MYELOMANEXT). This study was supported by the Riney Family Multiple Myeloma Research Program Fund

    Current applications of multiparameter flow cytometry in plasma cell disorders

    Get PDF
    Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia

    Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis

    Get PDF
    © The Author(s) 2021.Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity.This study was supported by a grant from CARIPLO “Molecular mechanisms of Ig toxicity in age-related plasma cell dyscrasias no. 2015-0591”, by a grant from the Black Swan Research Initiative from the International Myeloma Foundation “Automated multidimensional flow cytometry for high-sensitive screening and to monitor response in AL amyloidosis”, by a grant from CARIPLO “Structure–function relation of amyloid: understanding the molecular bases of protein misfolding diseases to design new treatments no. 2013-0964”, by a grant from the Amyloidosis Foundation “Investigating new therapies to treat AL amyloidosis”, and by a grant from Cancer Research UK, FCAECC and AIRC under the Accelerator Award 2017 Program “Early detection and intervention: understanding the mechanisms of transformation and hidden resistance of incurable hematological malignancies”, by a grant from CARIPLO “Harnessing the plasma cell secretory capacity against systemic light chain amyloidosis” (no. 2018-0257), by a grant from the Italian Ministry of Health “Towards effective, patient-tailored anti-plasma cell therapies in AL amyloidosis: predicting drug response and overcoming drug resistance” (GR-2018-12368387). This study has also supported the Centro de Investigación Biomédica en Red—Área de Oncología—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00400, and CB16/12/00489) and the Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS No. PI13/02196). G.P. is supported in part by the Bart Barlogie Young Investigator Award from the International Myeloma Society (IMS). P.M. is supported in part by a fellowship grant form Collegio Ghislieri (Pavia). We acknowledge the study coordinator and data manager Anna Carnevale Baraglia

    Integrated flow cytometry and sequencing to reconstruct evolutionary patterns from dysplasia to acute myeloid leukemia

    Get PDF
    Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workup. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly-diagnosed AML patients. Presence of dysplasia according to MFC and WHO criteria had no prognostic value in the elderly. NGS of dysplastic cells and blasts isolated at diagnosis identified three evolutionary patterns: stable (n=12/21), branching (n=4/21) and clonal evolution (n=5/21). In patients achieving complete response, integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in approximately 80% of newly diagnosed AML patients, using techniques other than single-cell multiomics.ACKNOWLEDGEMENTS: The authors acknowledge the patients, caregivers, and the biobank of the University of Navarra. This work was supported by grants from the Área de Oncología del Instituto de Salud Carlos III, Centro de Investigacion Biom ´ edica en ´ Red (CIBER-ONC) (CB16/12/00369, CB16/12/00233, CB16/12/ 00489, and CB16/12/00284), Instituto de Salud Carlos III/Subdireccion General de Investigaci ´ on Sanitaria (FIS numbers PI16/ ´ 01661, PI16/00517, and PI19/01518), and the Plan de Investigacion´ de la Universidad de Navarra (PIUNA 2014-18). This work was supported internationally by the Cancer Research UK, FCAECC, and AIRC under the Accelerator Award Program (EDITOR)

    B-cell regeneration profile and minimal residual disease status in bone marrow of treated multiple myeloma patients

    Get PDF
    © 2021 by the authors.B-cell regeneration during therapy has been considered as a strong prognostic factor in multiple myeloma (MM). However, the effects of therapy and hemodilution in bone marrow (BM) B-cell recovery have not been systematically evaluated during follow-up. MM (n = 177) and adult (≥50y) healthy donor (HD; n = 14) BM samples were studied by next-generation flow (NGF) to simultaneously assess measurable residual disease (MRD) and residual normal B-cell populations. BM hemodilution was detected in 41 out of 177 (23%) patient samples, leading to lower total B-cell, B-cell precursor (BCP) and normal plasma cell (nPC) counts. Among MM BM, decreased percentages (vs. HD) of BCP, transitional/naïve B-cell (TBC/NBC) and nPC populations were observed at diagnosis. BM BCP increased after induction therapy, whereas TBC/NBC counts remained abnormally low. At day+100 postautologous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC cell numbers but persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response (CR) BM samples showed higher CD19− nPC counts vs. non-CR specimens. MRD positivity was associated with higher BCP and nPC percentages. Hemodilution showed a negative impact on BM B-cell distribution. Different BM B-cell regeneration profiles are present in MM at diagnosis and after therapy with no significant association with patient outcome.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative, the EuroFlow Consortium (grant LSHB-CT-2006-018708); Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER), numbers: CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480; grant from Bilateral Cooperation Program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (Brasília/Brazil) and Dirección General de Políticas Universitárias (DGPU)-Ministério de Educación, Cultura y Deportes (Madrid/Spain) number DGPU 311/15; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) numbers: E26/110.105/2014 and E26/102.191/2013; grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPQ), number: 400194/2014-7. R.M.d.P. was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/DGPU), number: 000281/2016-06 and CAPES/PROEX 641/2018, Brazil; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) number: E01/200/537/2018

    Circulating tumor cells for the staging of patients with newly diagnosed transplant-eligible multiple myeloma

    Get PDF
    [Purpose]: Patients with multiple myeloma (MM) may show patchy bone marrow (BM) infiltration and extramedullary disease. Notwithstanding, quantification of plasma cells (PCs) continues to be performed in BM since the clinical translation of circulating tumor cells (CTCs) remains undefined. [Patients and methods]: CTCs were measured in peripheral blood (PB) of 374 patients with newly diagnosed MM enrolled in the GEM2012MENOS65 and GEM2014MAIN trials. Treatment included bortezomib, lenalidomide, and dexamethasone induction followed by autologous transplant, consolidation, and maintenance. Next-generation flow cytometry was used to evaluate CTCs in PB at diagnosis and measurable residual disease (MRD) in BM throughout treatment. [Results]: CTCs were detected in 92% (344 of 374) of patients with newly diagnosed MM. The correlation between the percentages of CTCs and BM PCs was modest. Increasing logarithmic percentages of CTCs were associated with inferior progression-free survival (PFS). A cutoff of 0.01% CTCs showed an independent prognostic value (hazard ratio: 2.02; 95% CI, 1.3 to 3.1; P = .001) in multivariable PFS analysis including the International Staging System, lactate dehydrogenase levels, and cytogenetics. The combination of the four prognostic factors significantly improved risk stratification. Outcomes according to the percentage of CTCs and depth of response to treatment showed that patients with undetectable CTCs had exceptional PFS regardless of complete remission and MRD status. In all other cases with detectable CTCs, only achieving MRD negativity (and not complete remission) demonstrated a statistically significant increase in PFS. [Conclusion]: Evaluation of CTCs in PB outperformed quantification of BM PCs. The detection of ≥ 0.01% CTCs could be a new risk factor in novel staging systems for patients with transplant-eligible MM.Supported by grants from the Centro de Investigación Biomédica en Red—Área de Oncología—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00400, and CB16/12/00284); Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS No. PI19/01451, PI20/00048, and PI21/01816); the Cancer Research UK (C355/A26819); FCAECC and AIRC under the Accelerator Award Program (EDITOR); the ISCIII and FEDER foundations (AC17/00101) together with FCAECC for iMMunocell Transcan-2; the European Research Council (ERC) 2015 Starting Grant (MYELOMANEXT/680200); the CRIS Cancer Foundation (PR_EX_2020-02), the Leukemia Lymphoma Society, the Black Swan Research Initiative of the International Myeloma Foundation; and the Riney Family Multiple Myeloma Research Program Fund

    Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)

    Get PDF
    © The Author(s) 2018.Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p <0.0001); in contrast, CTPC were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to progression from MGUS to MM (p <0.0001) and a shorter survival in MM patients with active disease requiring treatment (p ≤ 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a poorer outcome of both MGUS and MM.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative and the EuroFlow Consortium; Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER), numbers: CB16/12/00400, CB16/12/00369, CB16/12/00489 and CB16/12/00233; grant SA079U14 from the Consejería de Educación, Junta de Castilla y León, Valladolid, Spain and; grant DTS15/00119 from Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain. Acuerdo de colaboración con Fundación de Hemoterapia y Hemodonación de Castilla y León, Valladolid, Spain. This study was also supported by the Qatar National Research Fund (QNRF) Award No. 7-916-3-237, the AACR-Millennium Fellowship in Multiple Myeloma Research (15-40-38-PAIV), ERA-NET TRANSCAN-2 (iMMunocell), by a 2017 Leonardo Grant (BZG10931) for Researchers and Cultural Creators, BBVA Foundation, and the European Research Council (ERC) 2015 Starting Grant (MYELOMANEXT)

    Integrated flow cytometry and sequencing to reconstruct evolutionary patterns from dysplasia to acute myeloid leukemia

    Get PDF
    Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly diagnosed patients with AML. Presence of dysplasia according to MFC and World Health Organization criteria had no prognostic value in older adults. NGS of dysplastic cells and blasts isolated at diagnosis identified 3 evolutionary patterns: stable (n = 12 of 21), branching (n = 4 of 21), and clonal evolution (n = 5 of 21). In patients achieving complete response (CR), integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation, and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in ∼80% of patients with newly diagnosed AML, using techniques other than single-cell multiomics.This work was supported by grants from the Área de Oncología del Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red (CIBER-ONC) (CB16/12/00369, CB16/12/00233, CB16/12/00489, and CB16/12/00284), Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS numbers PI16/01661, PI16/00517, and PI19/01518), and the Plan de Investigación de la Universidad de Navarra (PIUNA 2014-18). This work was supported internationally by the Cancer Research UK, FCAECC, and AIRC under the Accelerator Award Program (EDITOR)
    corecore