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Current applications of multiparameter flow cytometry
in plasma cell disorders
This article has been corrected since Online Publication and an Erratum has also been published

T Jelinek1,2,3, R Bezdekova4, M Zatopkova2, L Burgos3, M Simicek2, T Sevcikova2, B Paiva3 and R Hajek1,2

Multiparameter flow cytometry (MFC) has become standard in the management of patients with plasma cell (PC) dyscrasias, and could
be considered mandatory in specific areas of routine clinical practice. It plays a significant role during the differential diagnostic work-
up because of its fast and conclusive readout of PC clonality, and simultaneously provides prognostic information in most monoclonal
gammopathies. Recent advances in the treatment and outcomes of multiple myeloma led to the implementation of new response
criteria, including minimal residual disease (MRD) status as one of the most relevant clinical endpoints with the potential to act as
surrogate for survival. Recent technical progress led to the development of next-generation flow (NGF) cytometry that represents a
validated, highly sensitive, cost-effective and widely available technique for standardized MRD evaluation, which also could be used for
the detection of circulating tumor cells. Here we review current applications of MFC and NGF in most PC disorders including the less
frequent solitary plasmocytoma, light-chain amyloidosis or Waldenström macroglobulinemia.
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INTRODUCTION
Plasma cell (PC) dyscrasias are a heterogeneous group of blood
disorders characterized by the detection of a monoclonal
paraprotein in serum or urine, which is often associated with
the presence of clonal PCs in the bone marrow (BM) and
eventually other tissues.1 With an estimated incidence of 6 cases
per 100 000 persons per year, multiple myeloma (MM) represents
the second most common hematologic malignancy and ~ 1% of
all malignant tumors.2 MM is characterized by the presence of
410% of clonal BM PCs (based on morphological assessment) or
biopsy-proven plasmocytoma, together with at least one of the so
called ‘myeloma defining events’.3 Myeloma is virtually always
preceded by an asymptomatic premalignant stage termed
monoclonal gammopathy of undetermined significance (MGUS)
that is present in about 3–4% of normal individuals over the age of
50 years.4,5 The risk of progression of MGUS to MM or related
disorders is about 1% per year.6,7 Smoldering multiple myeloma
(SMM) represents an intermediate clinical stage between MGUS
and MM in which the risk of progression to malignant disease in
the first 5 years after diagnosis is much higher, about 10% per
year.3,8 Amongst other, less frequent, PC dyscrasias there are:
(i) plasma cell leukemia (PCL), (ii) AL amyloidosis (AL),
(iii) Waldenström macroglobulinemia (WM), (iv) POEMS syndrome
and (v) solitary plasmocytoma with or without minimal BM
involvement (Table 1).
Multiparameter flow cytometry (MFC) immunophenotyping has

been a mainstay in the diagnosis and monitoring of most
hematologic malignancies.9–13 Together, with the patient’s clinical
history, analytic results and morphological assessment of blood

smears, MFC is also part of the initial diagnostic work-up, mainly
because of its capacity to typically provide conclusive results
within a few hours. As the importance of MFC has progressively
increased in PC dyscrasias (Figure 1), its utility will be thoroughly
reviewed in this manuscript.

DETECTION OF NORMAL AND PATHOLOGICAL PLASMA CELLS
Identification and enumeration of the PC compartment
The first step during the analysis of patients with PC dyscrasias at
diagnosis and during follow-up is represented by the identifica-
tion and enumeration of the PC compartment. PCs are end-stage
antibody producing B-cells that are derived from antigen-
activated B-cells generated in secondary lymphoid tissues.
Early-stage PCs (generally called plasmablasts) can be found in
peripheral blood (PB) during their recirculation from the tissues
of origin seeking for survival niches (for example, in BM) where
they evolve to long-living PCs. Plasmablasts lose CD20, express
CD19, CD38high, CD45 and approximately half of them show
reactivity for CD138.14 Although CD38 is a very promiscuous
antigen ubiquitously expressed on all immune cells, its intensity
is uniquely high on PCs,15 making it a reliable marker for PC
gating. Conversely, CD138 (Syndecan-1) is specific to PCs (within
hematopoietic cells) and, accordingly, has been found very useful
in their identification. These two markers together with CD45,
sideward (SSC) and forward (FSC) light scatter are recommended
for accurate identification and enumeration of PCs.16,17
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Immunophenotypic discrimination between normal vs pathologic
plasma cells
It should be noted that no single phenotypic marker is sufficient to
distinguish between normal/reactive plasma cells vs tumor plasma
cells. Most BM normal PCs do not express pan B-cell markers such
as CD20 or CD22, lack surface membrane immunoglobulins (smIg)
and show polyclonal cytoplasmatic staining of light chains
(cyKappa, cyLambda). Moreover, normal PCs show heterogeneous
expression of CD19, CD27, CD45 and CD81. Thus, among normal
BM PCs there are several phenotypically distinct subpopulations

that display maturation-associated features according to the most
commonly used markers CD19, CD27, CD45, CD56 and CD81. The
majority of normal BM PCs are CD19+, CD45dim, CD56− and CD81+,
but430% of them are CD19−, CD45+, CD56+ or CD81−, in multiple
possible combinations.17,18

There is compelling evidence that tumor PCs display different
phenotypic features as compared to their normal counterparts. It
was reported in 1998 a correlation between the presence of
abnormal phenotypes detectable by flow cytometry, and the
presence of tumor, clonal PCs; accordingly, fluorescent-activated

Table 1. Definitions of plasma cell related disorders (adopted from Rajkumar et al.,3)

Title Definition

MGUS Serum monoclonal protein (non-IgM type) o30 g/l
Clonal bone marrow plasma cells o10%
Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, and bone lesions (CRAB) or amyloidosis that
can be attributed to the plasma cell proliferative disorder

SMM Both criteria must be met:
• Serum monoclonal protein (IgG or IgA) ⩾ 30 g/l or urinary monoclonal protein ⩾ 500 mg per 24 h and/or clonal bone

marrow plasma cells 10–60%
• Absence of myeloma defining events or amyloidosis

MM Clonal bone marrow plasma cells ⩾ 10% or biopsy-proven bony or extramedullary plasmacytoma
Evidence of any of myeloma defining events

PCL Presence of 420% of clonal plasma cells in peripheral blood and/or the absolute number of circulating plasma cells exceeding
2 ×109/l in peripheral blood

Solitary Biopsy-proven solitary lesion of bone or soft tissue with evidence of clonal plasma cells
Plasmacytoma Normal bone marrow with no evidence of clonal plasma cells

Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the primary solitary lesion)
Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, or bone lesions (CRAB) that can be
attributed to a lymphoplasma cell proliferative disorder

Light-chain Abnormal FLC ratio (o0·26 or 41·65)
MGUS Increased level of the appropriate involved light chain (increased κ FLC in patients with ratio 41·65 and increased λ FLC in

patients with ratio o0·26)
No immunoglobulin heavy chain expression on immunofixation
Absence of end-organ damage such as hypercalcaemia, renal insufficiency, anaemia, and bone lesions (CRAB) or amyloidosis that
can be attributed to the plasma cell proliferative disorder
Clonal bone marrow plasma cells o10%
Urinary monoclonal protein o500 mg/24 h

AL Presence of an amyloid-related systemic syndrome (eg, renal, liver, heart, gastrointestinal tract, or peripheral nerve involvement)
Positive amyloid staining by Congo red in any tissue (eg, fat aspirate, bone marrow, or organ biopsy)
Evidence that amyloid is light-chain-related established by direct examination of the amyloid using mass spectrometry-based
proteomic analysis, or immunoelectronmicroscopy
Evidence of a monoclonal plasma cell proliferative disorder (serum or urine monoclonal protein, abnormal free light-chain ratio,
or clonal plasma cells in the bone marrow)

IgM-MGUS Serum IgM monoclonal protein o30 g/l
Bone marrow lymphoplasmacytic infiltration o10%
No evidence of anemia, constitutional symptoms, hyperviscosity, lymphadenopathy, hepatosplenomegaly or other end-organ
damage that can be attributed to the underlying lymphoproliferative disorder

Smoldering WM Presence of serum IgM monoclonal protein
Bone marrow lymphoplasmacytic infiltration 410%
No evidence of anaemia, constitutional symptoms, hyperviscosity, lymphadenopathy, hepatosplenomegaly, or other end-organ
damage that can be attributed to the underlying lymphoproliferative disorder

WM Presence of serum IgM monoclonal protein
Bone marrow lymphoplasmacytic infiltration 410%
Evidence of anaemia, constitutional symptoms, hyperviscosity, lymphadenopathy, hepatosplenomegaly, or other end-organ
damage that can be attributed to the underlying lymphoproliferative disorder

POEMS Polyneuropathy
Syndrome Monoclonal plasma cell proliferative disorder (almost always λ)

Any one of the following three other major criteria:
• Sclerotic bone lesions
• Castleman’s disease
• Elevated levels of VEGFA

Any one of the following six minor criteria:
• Organomegaly (splenomegaly, hepatomegaly, or lymphadenopathy)
• Extravascular volume overload (oedema, pleural eff usion, or ascites)
• Endocrinopathy (adrenal, thyroid, pituitary, gonadal, parathyroid, pancreatic)
• Skin changes (hyperpigmentation, hypertrichosis, glomeruloid haemangiomata, plethora, acrocyanosis, flushing, white

nails)
• Papilloedema
• Thrombocytosis/polycythaemia
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cell sorting (FACS) of PCs with aberrant vs normal phenotypes (for
example, bright expression of CD56) correlated with clonal vs
polyclonal PCR V–D–JH products.19 Additional studies confirmed
that tumor PCs typically show: (i) underexpression of CD19, CD27,
CD38, CD45 and CD81, (ii) overexpression of CD28, CD33, CD56,
CD117 and CD200 and (iii) asynchronous expression of CD20 and
SmIg.17,20–22 Except for CD117 that is almost never expressed on
normal PCs, most of the expression patterns defined above can be
found, individually (that is, not simultaneously), in small subsets of
nPCs. This has become particularly evident with the advent of
digital flow cytometers allowing for multidimensional combina-
tions together with faster acquisitions and the measurement of
higher number of cells. For example, it has been recently
suggested that long-lived PCs downregulated CD19, CD38,
CD45, CD81 and upregulated CD28 and CD56, which are some
of the phenotypic hallmarks of tumor PCs. In fact, it could be

speculated that such long-lived PCs could represent the normal
cellular counterpart of many MM patients. Thus, it is currently
recommended that the clonal nature of tumor PCs as defined by
MFC, should be confirmed by the presence of simultaneous and
multiple aberrant phenotypes together23 defined PC subsets with
such aberrant phenotypes. Frequencies of these abnormal
patterns of expression are summarized in Table 2.

Practical considerations
It is well-accepted that the percentage of PCs is usually under-
represented by MFC as compared to other cytologic methods.
While there are several factors that could be responsible for this
phenomenon, the most probable explanation is that tumor PCs
are associated with lipid enriched BM spicules in the morphology
slides, as opposed to lipid-depleted liquid BM analyzed by MFC.24

That notwithstanding, higher PB hemodilution has typically

Figure 1. Time axis highlighting the most important discoveries concerning multiparameter flow cytometry and its use in plasma cell
dyscrasias.

Table 2. List of the most relevant antigens for the detection of aberrant plasma cells in multiple myeloma

Antigen Normal plasma cell
immunophenotype

Aberrant plasma cell
immunophenotype

Percentage of patients with
aberrant phenotype

Reference

CD19 + − 95% 30

18

CD20 − Dim + 17–30% 30

22

CD27 ++ − or dim + 40–68% 22

CD28 − /weak + 15–45% 48

109

CD33 − + 15–18% 110

111

CD38 ++ Dim + 92% 62

26

CD45 + − 72–73% 62

112

CD54 + Dim + 60–80% 113

114

CD56 − ++ 60–76% 115

116

117

CD81 + − or dim + 45% 42

18

CD117 − + 30–37% 37

30

CD200 weak +/++ 65–86% 20

118

SmIg − + 30% 26

CD319 (SLAMF7, CS1) + + 90–97% 119

120

BCMA + + 100% 108
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characterized BM samples devoted to MFC (and other laboratory
tests), as the first BM pull has been dedicated to morphology
slides. Highly representative and non-diluted BM samples are
crucial for valid and precise results particularly during MRD
evaluation, and it is highly recommendable to use the first BM pull
for flow-based MRD assessment. Another factor resulting in the
underestimation of BM PCs is the loss of PCs during sample
preparation due to the potentially higher susceptibility of PCs for
mechanical damage.22 Accordingly, we recommend the adoption
of methods that have been extensively validated and demon-
strated superior PC recovery as compared to other methods.23 It
should be noted though that most current applications of MFC
take place in disease stages or disease entities in which PCs are
o1% of total nucleated BM cells and in which a mixture of normal
and tumor PCs coexist, making it the only cytologic technique
with enough sensitivity for accurate quantification and character-
ization of tumor PCs.

THE TRANSITION FROM MGUS TO SMOLDERING AND ACTIVE
MM
Role of MFC in differential diagnosis
From a clinical point of view, one of the most evident roles of
routine MFC is during patients’ differential diagnostic work-up.
First, to distinguish between prominent but reactive and benign
plasmocytosis vs clonal and potentially malignant PC dyscrasias.25

Second, to recognize B-cell non-Hodgkin lymphomas (B-NHL) with
extensive plasmacytic differentiation such as lymphoplasmacytic
lymphoma (LPL, WM) or marginal zone lymphoma (MZL). The
distinction can be made by careful identification of small B-cell
clones that may be below the limit of detection of morphology or
immunohistochemistry (IHC), together with comprehensive eva-
luation of the phenotypic profile of tumor PCs.26 Third, to confirm
the diagnosis of rare IgM myeloma cases based on distinct PC
phenotype from other IgM producing B-cell disorders.25 Fourth, to
help discriminate between MGUS vs SMM vs active MM based on
the percentage of nPCs within the bone marrow PC (BMPC)
compartment. Twenty years have passed since Ocqueteau et al.
described that MGUS is characterized by the co-existence of
normal PCs and tumor PCs (100% of cases) whereas in MM this
finding is less frequent (22% of cases). Moreover, only 1.5% of
MM patients had more than 3% of nPCs, whereas 98% of
MGUS patients had more than 3% of nPCs. Therefore, a proposed
cut-off of 45% of residual normal PCs (within the BMPC
compartment) has been found to help in the discrimination
between MGUS and active MM.19,27,28 That notwithstanding, one
of the most useful applications of this threshold has been found
in SMM, in which it would allow to discriminate patients with
MGUS-like vs MM-like phenotypic profiles and different risk of
progression.29,30

Role of MFC in providing prognostic information
Prognostic information provided by MFC-based evaluation of the
BM PC compartment is not that widely used as other prognostic
factors such as International staging system (ISS), cytogenetic
abnormalities or lactate dehydrogenase.31–33 Nevertheless, there
is growing evidence suggesting that MFC can be useful to: (i)
predict the risk of transformation of MGUS and SMM into active
MM; (ii) identify a small subgroup of symptomatic MM patients
with an exceptionally favorable prognosis (that is, those with
MGUS-like profile); and (iii) offer prognostic information based on
the immunophenotype of tumor PCs. The prognostic value of
circulating PCs (CTCs) will be reviewed in a separate chapter.
The model predicting the risk of transformation of MGUS and

SMM into symptomatic MM was designed by the Spanish group
and is based on the presence of 495% of tumor PCs within the
BM PC compartment. Thus, MGUS patients who fulfill this criterion

had a cumulative probability of progression into symptomatic MM
at 5 years of 25 vs 5% of those who had o95% of tumor PCs.
Similarly, using the same criterion in SMM patients, a cumulative
probability of progression into active MM at 5 years was 64% vs
only 8%.29,34 There are ongoing efforts to standardize MFC and
develop automated models to predict risk of transformation in
SMM.35 Conversely, a subgroup of newly diagnosed MM (NDMM)
patients who have, at the time of diagnosis, more than 5% of
residual normal PCs from all BM PCs, display unique clinical and
biological characteristics such as lower BM infiltration by PCs,
higher hemoglobin levels, lower frequency of immune paresis and
others. Paiva et al.36 have shown in a cohort of 594 uniformly
treated NDMM patients, that this subgroup (14% of analyzed
patients) had significantly longer progression-free survival (med-
ian PFS, 54 vs 42 months, P= .001) and overall survival (median OS,
not reached vs 89 months, P= 0.04) than patients with ⩽ 5% of
normal PCs in the BM PC compartment. Driven by these
observations, the Spanish Myeloma Group subsequently devel-
oped an automated flow cytometric algorithm that recognizes,
amongst NDMM patients, those with the so-called MGUS-like
phenotype that display a highly favorable prognosis. According to
this algorithm, 8% of NDMM patients were identified with an
MGUS-like profile. MGUS-like cases had unprecedented longer
time-to-progression (TTP) and OS (∼60% at 10 years; Po0.001)
rates. Importantly, MGUS-like MM patients failing to achieve
complete remission (CR) showed similar TTP (P= 0.81) and OS
(P= 0.24) vs cases attaining CR. In fact, identifying these patients
could be clinically relevant because they may experience
favorable outcomes (may not progress despite evidence of
disease, as MGUS patients do) in the absence of CR. This group
of patients may represent an exception to the rule: ‘the deeper the
response, the longer the survival’ and should not be over-treated
in pursuit of reaching deep responses.30 That notwithstanding,
MGUS-like patients reaching MRD-negativity after first-line treat-
ment have the best outcomes of all MM patients (median PFS of
12 years and a 10-year OS rate of 94%).37

Many studies have been conducted to evaluate the prognostic
significance of the immunophenotype of myeloma PCs, but only a
few antigens have shown to be of prognostic value. CD117 (proto-
oncogene c-KIT) is a receptor tyrosine kinase normally expressed
by mast cells and hematopoietic progenitors in the BM, but absent
during B-cell maturation from early precursors to PCs.38 This
antigen is aberrantly over-expressed in ~ 70% of MGUS patients
and 30% of MM patients. Although its expression is related to
oncogenic transformation in other malignancies, in MM it is
associated with favorable outcomes. This occurs hypothetically
because of the altered homing of clonal CD117+ PCs that are
redirected towards the neutrophil precursor niches, thus giving
space for maintenance of residual nPCs.39,40 Conversely, adverse
prognosis is associated with expression of CD28 (T-cell co-
stimulatory receptor) that is positive in approximately 35% of
MM cases. This adverse effect was originally attributed to a strong
association with high-risk cytogenetic abnormalities, but recently
an alternative explanation has been proposed based on the pro-
survival effect of plasma cell–dendritic cell interactions.39,41

According to Mateo et al., three separate risk groups can be
identified based on the cohort of 685 uniformly treated NDMM
patients: poor (CD28+/CD117−), intermediate (CD28+/CD117+ or
CD28−/CD117−) and good (CD28−/CD117+) with corresponding
median OS of 45 months, 68 months and not reached,
respectively. This study also revealed an adverse prognostic role
of CD19 (part of the B-cell receptor, expressed only in B-cell
lineage) that is positive only in 5% of MM patients.39 The antigen
CD19 is regulated by CD81 that is a glycoprotein from the
tetraspanin family expressed in 45% of MM cases. Paiva et al.42

described and validated the expression of CD81 as a negative
prognostic marker for symptomatic MM patients as well as a
marker for the risk of progression in SMM patients. Recently, a new
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maturation axis of normal PCs, based on these two antigens—
CD19 and CD81, was proposed. Three BM PC subsets with
progressively increased differentiation from CD19+/CD81+ into
CD19−/CD81+ and CD19−/CD81−PCs were identified. Authors also
demonstrated that MM cells fit into such a model of normal BM PC
differentiation and revealed that 59% of 225 NDMM patients had
fully differentiated (CD19−CD81−) clones, 38% intermediate-
differentiated (CD19-CD81+), and 3% less-differentiated (CD19
+CD81+) clones. The latter patients had a dismal outcome, and PC
differentiation emerged as an independent prognostic marker for
PFS and OS.18 The prognostic impact of other frequently used
markers such as CD20, CD45, CD56 or CD200 is not strong enough
to consider them to be independent prognostic markers.22,43

The assessment of PC ploidy and proliferation have been long
shown to provide prognostic information in MM.44,45 However, it
should be noted that while the detection of both non-
hyperdiploid DNA content and ⩾ 1% PCs in S-phase are of
independent prognostic value for OS in newly diagnosed MM
patients, treatment with bortezomib-based regimens might
abrogate the inferior OS of patients with ⩾ 1% PCs in S-phase.46

Thus, the prognostic value of MFC-based DNA studies should be
revisited in the era of modern treatment strategies.

Role of MFC in response assessment
Traditional response criteria in MM have been based on the
evaluation of serum and urine monoclonal protein concentrations
by electrophoresis or immunofixation as a surrogate for tumor
burden.47 The original definition of complete response (CR)
required o5% of PCs in the BM, irrespective of their clonal
nature, together with negative immunofixation and disappear-
ance of any soft tissue plasmocytomas.48 This definition was
further refined to stringent complete response (sCR) by adding the

normalization of the serum free light chain (sFLC) ratio and the
absence of clonal PCs in BM assessed by IHC.49 Nowadays, there is
a direct relationship between the depth of the response,
particularly CR, and prolonged PFS and OS. This has been
confirmed amongst NDMM transplant-eligible as well as elderly
patients and also in relapsed/refractory patients.50–52 This concept
of ‘the deeper the response, the longer the survival’ is valid for the
vast majority of MM patients with the exception of specific
molecular subgroups or those with an MGUS-like phenotypic
profile.30,53 The recent progress in effective treatment strategies
for MM was translated in considerably better outcomes with
practically 100% of patients responding to treatment and 450%
reaching CR. These advances created an unmet need to
implement highly sensitive techniques able to determine the
presence of very low numbers of clonal PCs within the BM— that
is, minimal residual disease (MRD) (Table 3). In the most recent
International Myeloma Working Group (IMWG) consensus guide-
lines for response assessment, new MRD criteria were introduced
and an MRD-negative status assessed by next-generation flow
(NGF) cytometry was included.52

The concept of MFC-based monitoring of MRD and its
prognostic value was introduced in 2002 by Spanish and UK
groups.54,55 Paiva et al. demonstrated in 295 uniformly treated
NDMM patients receiving HDT/ASCT that MRD-negativity at day
+100 after ASCT translated to significantly prolonged PFS (PFS;
median 71 vs 37 months, Po0.001) and OS (OS; median not
reached vs 89 months, P= 0.002).56 Similarly, Rawstron et al.
reported that in 397 patients from the UK MRC Myeloma IX trial,
MRD negativity at day +100 after ASCT is highly predictive for
favorable outcomes.57 Interestingly, the combined evaluation of
baseline cytogenetics/FISH and flow MRD evaluation at day +100
after ASCT provides powerful risk stratification and identifies a
subgroup of patients with dismal outcomes of OS of only 2 years

Table 3. Results of the most relevant studies using multiparameter flow cytometry for detection of minimal residual disease in multiple myeloma

Setting Method LOD Number of
patients

CR (%) MRD-negativity (%) PFS (MRD- vs MRD+) P-value OS (MRD- vs MRD+) P-value Reference

CT or
ASCT

4-color
MFC

10− 4 87 39/87 (45%) 23/87 (26%) 60 m vs 34 m 0.02 NA − 48

ASCT 3-color
MFC

10− 3
–

10− 4
45 33/45 (73%) 24/45 (56%) 35 m vs 20 m 0.03 76 vs 64% at 5-years 0.28 49

ASCT 4-color
MFC

10− 4 295 147/295 (50%) 125/295 (42%) 71 m vs 37 m o0.001 NR vs 89 m 0.002 50

Elderly 4-color
MFC

10− 4
–

10− 5
102 44/102 (43%) 24/102 (24%) 90 vs 35% at 3-years o0.001 94 vs 70% at 3-years 0.08 90

ASCT 4-color
MFC

10− 4
–

10− 5
241, CR 241 (100%) 154/241 (64%) 86 vs 58% at 3-years o0.001 94 vs 80% at 3-years 0.001 52

ASCT 6-color
MFC

10− 4 397 214/394 (54%) 246/394 (62%) 29 m vs 14 m o0.001 81 m vs 59 m 0.02 51

ASCT 7-color
MFC

10− 5 31 18/31 (58%) 21/31 (68%) 100 vs 30% at 3-years NA NA − 121

R/R 4-color
MFC

10− 4 52, CR 52 (100%) 24/52 (46%) 75 m vs 14 m 0.03 NA − 122

Elderly 4 & 8-
color

10− 5 162 81/162 (50%) 54/162 (34%) Median TTP: MRD-ve: NR
CR & MRD+ve: 20 m
oCR & MRD+ve: 11 m

o0.001 3 year OS: MRD-ve:
67%
CR & MRD+ve: 53%
oCR & MRD+ve: 60%

0.19 53

NA 4 & 6-
color

10− 4 78, CR 78 (100%) 34/78 (44%) 29.2 m vs 13.8 m 0.009 110.7 m vs NR 0.94 123

Follow-up NGF 10− 5 110 ⩾VGPR 71/110 (64%) convent. flow: 37/110
(34%) NGF: 52/110
(47%)

75% NR vs 10 m 0.01 NA − 54

RVD+SCT
RVD 7-color

MFC
10− 4 350

350
205/350 (59%)
169/350 (48%)

220/278 (79%)a

171/265 (65%)a
adjusted HR= 0.30 Po0.001 adjusted HR= 0.34 Po0.001 124

Abbreviations: ASCT autologous stem cell transplantation; CR, complete remission; CT, Chemotherapy; HR, hazard ratio; m, month; MFC, multiparameter flow
cytometry; MRD, minimal residual disease; NA, data not available; NGF, next-generation flow; OS, overall survival; PFS, progression-free survival; R/R, relapse/
refractory; RVD, lenalidomide, bortezomib and dexamethasone; SCT, stem cell transplantation; VGPR, very good partial response. aMRD evaluated in patients
reaching CR or VGPR.
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(those with high-risk FISH and MRD positivity).58 These studies
were performed using 4- and 6-color (the first generation) MRD
methods reaching sensitivity of 10− 4 (ability to identify 1 PC in
10 000 cells, that is 0.01%). On the basis of the second-generation
flow MRD methods mostly defined by the usage of 8 colors and
interrogation of a higher numbers of cells, Paiva et al. showed that
the MRD status is one of the most important and independent
prognostic factors also in elderly transplant-ineligible patients
(n= 162). The sensitivity of this method reached 10−5 (ability to
identify 1 PC in 100 000 cells, that is, 0.001%). This study also
showed that it is important to reach the sensitivity of 10−5 as the
patients being MRD positive, even at very low levels below 10−4,
had significantly worse outcomes.59 A highly sensitive and fully
standardized approach called NGF for MRD detection in MM was

implemented by the EuroFlow Consortium recently. Optimized
two 8−color tube panels with an established bulk-lysis procedure
allow the acquisition of ⩾ 107 cells/sample reaching sensitivity
close to 10−6 (with the limit of detection being 20 clonal PCs
among 107 evaluated BM cells, that is, 0.0002% and limit of
quantification 50 clonal PCs among 107 BM cells)23 Figure 2.
Moreover, NGF MRD is applicable to virtually all patients (⩾ 98%)
and incorporates a quality check of patient BM sample via
simultaneous identification of a significant decrease in the non-PC
BM population (such as CD117+++ mast cells, nucleated red cells,
117+ myeloid precursors or CD19+ CD45lo CD38+ B-cell pre-
cursors). This information is crucial to recognize potentially
hemodiluted BM aspirates that may lead to false-negative
results.23,60 The exact preparation procedures, staining, acquisition

Figure 2. Example of MRD analysis in MM using next generation flow approach and Infinicyt software (Cytognos). (a) Bone marrow PC
compartment represents 0.04% of total nucleated cells including 98.5% of normal PCs (blue) and 1.5% of aberrant PCs (red). These aberrant
plasma cells represent 0.0004% of total nucleated cells translating in MRD positive result reaching the sensitivity of 10− 6. The typical aberrant
phenotype: CD45−/CD38dim/CD19−/CD56+/CD27−/CD81−/CD117+/cyKappa+. (b) NGF is optimal tool also for follow-up of patients with non-
secretory multiple myeloma. Bone marrow PC compartment represents 0.16% of total nucleated cells including 50% of normal PCs (blue) and
50% of aberrant PCs (red). Aberrant PCs in this case have rare immunophenotype with CD38- and lack of cytoplasmic staining of kappa or
lambda light chains: CD45+/CD38−/CD19−/CD56+/CD27−/CD81+/CD117−/cyKappa−/cyLambda−.
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and reporting of flow MRD are described in detail in recently
published guidelines.16,61 Flow MRD represents a fast, highly
sensitive, standardized, cost-effective and widely available tech-
nique for MRD evaluation in MM and is likely to soon be
implemented in routine clinical practice as one of the most
important clinical endpoints and sensitive readouts of treatment
efficacy.
Other alternative to MFC-based method of MRD evaluation

represent molecular techniques, mainly ASO-PCR (allele-specific
oligonucleotide PCR) and NGS (next-generation sequencing). Both
methods reach high levels of sensitivity (down to 10−5–10−6) and
do not require immediate sample processing in contrary to MFC
method (sample should be processed within 36–48 h after BM
harvest). On the other hand, these methods have some
disadvantages: (i) lower applicability (ASO-PCR ~ 60–70%, NGS~
90%), (ii) requirement of diagnostic sample to identify patient-
specific clonotypic sequences, (iii) higher financial costs and (iv)
methodologically complex and laborious methods difficult to
implement in routine clinical practice.62–64

CIRCULATING PLASMA CELLS
Long-living BM PCs do not circulate under physiological condi-
tions in PB, but in patients with certain monoclonal gammopa-
thies (MG) tumor cells can egress from BM into PB as circulating
tumor cells (CTCs). Accordingly, the presence of CTCs was
documented not only in symptomatic MM, but also in SMM and
MGUS.65,66 Paiva et al.67 demonstrated that in MM the number of
CTCs fluctuates throughout the day, following a circadian rhythm
similar to CD34+ cells, suggesting that CTCs may egress to PB to
colonize other sites during the patients’ resting period.
The detection of CTCs in NDMM patients by conventional

morphology is low (20% of all cases).68 By using more sensitive MFC
(Figure 3), CTCs are detected in approximately 70–87% of all NDMM
patients65,69,70 and up to 60% of MGUS patients.71 The number of
CTCs is an independent prognostic factor in NDMM patients as well
as in AL amyloidosis, and their presence is associated with shorter
survival.66,72–74 CTCs are associated with an increased risk of
malignant transformation in MGUS72 and SMM75,76 and they are
also a negative prognostic factor in RRMM.77 It is expected that
particularly in SMM, MFC could become a convenient method (that
is, non-invasive) to identify patients with high-risk of progression to

MM before they develop end-organ damage.76 CTC FACS could also
be used as a minimally-invasive method to interrogate patients’
genomic landscape over time.78

From a biological standpoint, in comparison to BM PCs, CTCs
show down-regulation of some surface markers such as several
integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion molecules
(CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/
CD81).67 However, the cause and mechanism of PC egression from
BM remains poorly understood, as one of the hallmarks of aPCs in
early stages of the disease is their dependence on the BM
microenvironment. Possible reasons for their migration/expansion
may include changes in angiogenesis and the subsequent increase
in their proliferative rate, higher incidences of genetic abnormalities
or changes in the expression profile of adhesion molecules.67,79,80

An important question remains unanswered: is the presence of
CTCs linked to the natural development of the disease or does it
identify a separate biological subgroup of patients?80–82 It was
shown that CTCs are mostly quiescent, but they could have a higher
clonogenic potential to their paired BM counterparts. This fact could
explain their potential ability of dissemination. In such cases, CTCs
would represent a unique subpopulation of BM clonal PCs.67

Recently, Bretones et al. compared exomes of FASC sorted BM PCs,
CTCs and PCs from extramedullary (EM) tissues in 6 MM patients
with EM disease and demonstrated the presence of systematic
inter-tissue heterogeneity (though not for targetable mutations).
CTCs displayed the highest frequency of shared mutations with the
two other clones and the lowest number of private mutations,
suggesting that while CTCs may bridge BM and EM myeloma, there
is continuous genomic evolution once different clones have seeded
in their respective niches.83

SOLITARY PLASMOCYTOMA
Solitary plasmocytomas (SPs) are rare PC dyscrasias (o5%) that
are characterized by the presence of bone (solitary bone
plasmocytoma—SBP) or extramedullary soft tissue (extramedul-
lary plasmocytoma—EMP) infiltrates of tumor PCs in the absence
of any clinical, laboratory and radiologic features of MM.84,85 Local
radiotherapy, with or without surgical excision, is the recom-
mended treatment of choice for these patients, and achieves high
OS rates. Patients with SBP may progress to MM at a rate of
approximately 40–50%, with lower rates of progression for

Figure 3. Next-generation flow approach used for identification of CTCs in MGUS, smoldering MM and active MM patients.
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EMP.85,86 According to the 2014 IMWG criteria, SPs were divided
into 2 entities: with or without minimal BM involvement based on
the evaluation of the presence of tumor PCs by MFC, Table 1. In
fact, the presence of tumor PCs in patients with SP has become
the most important prognostic marker defining the risk of
progression. Paiva et al. have detected tumor PCs in 49% (17/35)
of SBP patients and in 38% (11/29) of EMP patients. Seventy-one
percent of flow-positive vs only 8% of flow-negative SBP patients
evolved to MM (hazard ratio, 17.4; Po0.001). No significant
differences were observed among EMP cases. Almost identical
results were published by a UK group84 enhancing the importance
of MFC for the sub-classification of patients with SP and leading to
its new classification as noted above.

AL AMYLOIDOSIS
Immunoglobulin light-chain amyloidosis (AL amyloidosis) is a rare
PCD with an incidence of 10 patients per million cases per year but
represents the most common of systemic amyloidoses.87 This often
fatal disorder is characterized by the presence of a usually small
indolent clone of BM PCs that produce misfolded monoclonal light
chains of κ or most predominantly λ isotype formatting insoluble
fibrils causing damage to vital organs, Table 1.88 In AL, MFC can be
useful to confirm the presence of underlying tumor PCs responsible
for the deposition of the amyloid light chains in tissue biopsies. This
underlying tumor PC clone is present and revealed by MFC in
virtually all AL patients.89,90 There are only few MFC studies focusing
on its prognostic value due to the rarity of this disease. Quantification
of the BM PC compartment by MFC was found to be a significant
prognostic factor for OS (o1 vs 41% BMPC cutoff; 2-year OS rates
of 90 vs 44%, P=0.02) in the cohort of 35 newly diagnosed AL
patients. Moreover, detecting persistent nPCs at diagnosis identified
a subgroup of patients with prolonged OS (cut off 45 vs o5% of
nPCs/BMPC, 2−year rates of 88 vs 37%, P=0.01). In these series, 49%
(17/35) of AL patients had 45% of nPCs/BMPC at diagnosis.91 More
recently, a very similar study was published by the Mayo Clinic group
(n=173) confirming some of the above mentioned results using a
different cutoff for quantification of BM PCs (2.5%).92

WALDENSTRÖM MACROGLOBULINEMIA
Waldenström macroglobulinemia (WM) was originally described by
Jan Gösta Waldenström in 1944.93,94 This disease is defined as a
lymphoplasmacytic lymphoma associated with the monoclonal
immunoglobulin IgM and BM infiltration by small IgM-producing
clonal B-lymphocytes that may exhibit PC differentiation.95 An
incidence of 4 cases per million persons per year ranks this disease
amongst rare disorders.93 The clinical presentation of patients with
WM can be highly variable as the signs and symptoms are not only
due to the infiltration of BM or lymphoid organs (anemia,
hepatosplenomegaly and so on), but also due to the specific
physiochemical and immunological properties of monoclonal IgM
(peripheral neuropathy, hyperviscosity and so on).96 Similarly to
MM, it is supposed that virtually all cases of WM have gone through
the benign stages of IgM MGUS and smoldering WM (SWM) before
developing clinical symptoms. The hallmark of these three entities is
the presence of the monoclonal IgM protein. The difference
between IgM MGUS and smoldering WM is in the BM infiltration
by B-lymphocytes (with a cutoff of 10% defined by morphology).
Smoldering WM, in contrast to symptomatic WM, lacks any disease-
associated clinical symptoms, thus not requiring any treatment.95,97

Advances in understanding the molecular pathogenesis of WM
have been paved by the discovery of a recurrent somatic mutation
in MYD88L265P that is present in more than 90% of symptomatic
WM patients, but also in at least half of IgM MGUS patients
suggesting its role as an early oncogenic event.98,99 The most
plausible normal counterpart of the WM clonal B-cell seems to be a

CD22low+/CD25+ memory B-cell as the cell of tumor origin,97 even
though this question has still not been fully answered.100

MFC plays a significant role in the differential diagnostic work-
up. It is particularly useful to distinguish WM from other B-cell
lymphoproliferative disorders as well as from related IgM
monoclonal gammopathies (that is, IgM MGUS, IgM myeloma)
based on the specific immunophenotype of WM B-cells and PCs.96

The co-existence of a clonal B-cell population and the same light-
chain-isotype clonal plasma cell population within the BM
compartment is usually accompanied by an increased number
of mast cells, thus representing typical findings.101 The most
common immunophenotype of WM clonal B-cells can be
described as follows: CD19+/CD22low+/CD23 −/CD25+/CD27+

/SmIgM+. In more detail, clonal B-cells systematically show
SmIgM+ expression, with homogenously expressed CD22low+

(81% of cases) and CD25+ (89% of cases). CD79b and CD81 are
positive in all cases, whereas a heterogeneous bimodal pattern of
expression can be observed for CD27 (51% of cases), CD38 (50%)
and CD200 (62%). CD305 (LAIR1) is not expressed in up to 69% of
cases in contrast to its bimodal heterogeneous expression on
normal B-cells. The absence of the expression of CD5, CD10,
CD11c and CD103 (in 95%, 100 96 and 100% of cases, respectively)
is in contrast with most other mature lymphoid malignancies
(chronic lymphocytic leukemia, mantle cell lymphoma, follicular
lymphoma and hairy cell leukemia) except of marginal zone
lymphoma (MZL), thus helping in their distinction. The most useful
markers to discriminate between WM and MZL, that possess the
overlapping phenotype in some cases, were SmIgM and CD79b,
both over-expressed in WM, and CD305 upregulated in MZL.97,102

The antigenic profile of clonal PCs in WM resembles more
that of normal PCs and clearly differs from that of MM patients
(for example, CD19−/CD27−/CD45− and/or CD56+). Bone marrow
PCs from IgM MGUS to symptomatic WM patients show a
progressively increased frequency of CD19+/CD20+/CD45+ and
SmIgM+ cells, together with a complete loss of CD56 reactivity.
This suggests that the PC compartment is enriched in more
immature clonal PCs with the plasmablastic phenotype.103 The
different antigenic profile of clonal PCs can have a valuable input
to distinguish WM from IgM MM, together with the MYD88
mutation status (not present in IgM MM) and the presence of
t(11; 14) (does not occur in WM but with a high incidence in
IgM MM).93,104,105

Flow cytometry may be a useful tool in the discrimination
between IgM-related disorders. The thresholds of BM B-cell
infiltration (410%) and the degree of B-cell clonality (100%) are
highly specific to exclude the diagnosis of IgM-MGUS, but not
otherwise to identify WM patients. However, flow cytometry can
also serve as a valuable prognostic tool in patients with
smoldering and symptomatic WM. Patients with smoldering WM
who have more than 10% of BM B-cell infiltration and who
show full light-chain restriction of the B-cell compartment are at a
higher risk of progression to symptomatic disease (median TTP of
26 vs 145 months, P⩽ 0.001). Similarly, patients with symptomatic
WM and with 100% of light chain restricted B-cells show
inferior survival vs those who maintain some polyclonal B-cells
(median OS of 44 vs 78 months, P= 0.001). To note, full light
chain restriction of the PC compartment has no effect on both TTP
and OS in smoldering and symptomatic WM patients,
respectively.102

Finally, the role of MFC was also investigated during the
response assessment. García-Sanz et al.106 described in 42 WM
patients that post-treatment BM residual disease status 45% of
monoclonal B-cells was highly predictive of short PFS and OS,
independently on hematological response. With the availability of
more effective therapies for WM, it will be critical to combine
sensitive and comprehensive monitoring of clonality in both
B-cells and PCs together with the evaluation of serum M-protein,
since the complete eradication of only clonal B-cells but not PCs
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(for example, through anti-CD20 immunochemotherapy) may
translate into a favorable outcome despite sub-optimal response
according to current criteria (that is, persistent M-protein).

CONCLUSION
MFC immunophenotyping has become routinely used in the
management of patients with PC dyscrasias. MFC plays a
significant role during the differential diagnostic work-up, when
this technique can provide relatively fast and conclusive results,
thus helping to distinguish between malignant and reactive
conditions as well as classifying different monoclonal gammopa-
thies and other lymphoproliferative disorders. Flow cytometry can
also be useful in predicting outcomes not only in MGUS/SMM/MM,
but also in patients with SWM/WM, AL and SP. The obtained
information could be particularly beneficial in maintaining a closer
surveillance of patients at a higher risk of progression and in
identifying the subgroup of patients with exceptionally favorable
outcomes. Flow-based MRD monitoring in MM, particularly after
the implementation of NGF, represents a fast, highly sensitive,
standardized, cost-effective and widely available technique. The
importance of defining the MRD status is indisputable in MM
patients and flow MRD is progressively being implemented in
routine clinical practice as one of the most relevant treatment
end-points. Immunophenotyping has greatly contributed also in the
research of monoclonal gammopathies and may be of significant
importance in the upcoming era of immunotherapy, especially in
defining and monitoring therapeutic targets such as CD38, SLAMF7,
PD-L1, BCMA and many others that are yet to be discovered.107,108
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