362 research outputs found

    An institutional ethnography of prevention and treatment services for substance use disorders in the Dominican Republic

    Get PDF
    The Dominican Republic is thought to have significant epidemics of illicit drug use but lacks surveillance and formal analyses of the policy context of drug prevention and treatment services. We conducted an institutional ethnography of 15 drug service organisations in Santo Domingo and Boca Chica, Dominican Republic, to explore barriers and resources for drug abuse prevention and treatment. Here, we present a typology of drug service organisations based on their services, methods, and approach. We then draw on interviews with representatives of drug service institutions to describe the primary barriers to drug treatment and prevention services for drug users. We conclude with a focus on the policy priorities that could improve the conditions of health care for marginalised drug users in the Dominican Republic

    Isolation and Identification of an Antimutagenic Phthalate Derivative Compound from Octopus (Paraoctopus limaculatus)

    Get PDF
    Purpose: To isolate and evaluate the antimutagenic properties of compounds previously identified in octopus (Paraoctopus limaculatus).Methods: Octopus fractions, previously obtained by a sequential thin layer chromatography (TLC) procedure, were subjected to further fractionation by TLC and their anti-mutagenic activity monitored using Salmonella tester strains TA98 and TA100 with metabolic activation (S9) in Ames test. The isolated fractions were subjected to structural studies by Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (1H and 13C NMR), and gas chromatography-mass spectrometry.Results: Five new fractions were obtained from a previously isolated and reported anti-mutagenic octopus fraction. Fractions RB21321b2 and RB21321b3 inhibited > 80 % of the mutagenicity induced by 500 ng AFB1 on both tester strains and were selected for chemical/structural characterization. Data from IR and 1H and 13C NMR suggested the presence of phthalate type of compounds. GC-MS analysis revealed 278 m/z for both fractions which is consistent with a butyl isobutyl phthalate structure.Conclusion: Based on the findings, the compound responsible for the high anti-mutagenic activity of the isolated fraction from octopus is 1-butyl-2-isobutyl-phthalate.Keywords: Octopus, Anti-Mutagenic, Paraoctopus limaculatus, 1-Butyl-2-isobutyl-phthalat

    P110 and P140 Cytadherence-Related Proteins Are Negative Effectors of Terminal Organelle Duplication in Mycoplasma genitalium

    Get PDF
    BACKGROUND:The terminal organelle is a complex structure involved in many aspects of the biology of mycoplasmas such as cell adherence, motility or cell division. Mycoplasma genitalium cells display a single terminal organelle and duplicate this structure prior to cytokinesis in a coordinated manner with the cell division process. Despite the significance of the terminal organelle in mycoplasma virulence, little is known about the mechanisms governing its duplication. METHODOLOGY/PRINCIPAL FINDINGS:In this study we describe the isolation of a mutant, named T192, with a transposon insertion close to the 3' end of the mg192 gene encoding for P110 adhesin. This mutant shows a truncated P110, low levels of P140 and P110 adhesins, a large number of non-motile cells and a high frequency of new terminal organelle formation. Further analyses revealed that the high rates of new terminal organelle formation in T192 cells are a direct consequence of the reduced levels of P110 and P140 rather than to the expression of a truncated P110. Consistently, the phenotype of the T192 mutant was successfully complemented by the reintroduction of the mg192 WT allele which restored the levels of P110 and P140 to those of the WT strain. Quantification of DAPI-stained DNA also showed that the increase in the number of terminal organelles in T192 cells is not accompanied by a higher DNA content, indicating that terminal organelle duplication does not trigger DNA replication in mycoplasmas. CONCLUSIONS/SIGNIFICANCE:Our results demonstrate the existence of a mechanism regulating terminal organelle duplication in M. genitalium and strongly suggest the implication of P110 and P140 adhesins in this mechanism

    Empirical Bayesian Mixture Models for Medical Image Translation

    Get PDF
    Automatically generating one medical imaging modality from another is known as medical image translation, and has numerous interesting applications. This paper presents an interpretable generative modelling approach to medical image translation. By allowing a common model for group-wise normalisation and segmentation of brain scans to handle missing data, the model allows for predicting entirely missing modalities from one, or a few, MR contrasts. Furthermore, the model can be trained on a fairly small number of subjects. The proposed model is validated on three clinically relevant scenarios. Results appear promising and show that a principled, probabilistic model of the relationship between multi-channel signal intensities can be used to infer missing modalities -- both MR contrasts and CT images.Comment: Accepted to the Simulation and Synthesis in Medical Imaging (SASHIMI) workshop at MICCAI 201

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    A common genetic network underlies substance use disorders and disruptive or externalizing disorders

    Get PDF
    Here we summarize evidence obtained by our group during the last two decades, and contrasted it with a review of related data from the available literature to show that behavioral syndromes involving attention deficit/hyperactivity disorder (ADHD), externalizing disorders, and substance-use disorder (SUD) share similar signs and symptoms (i.e., have a biological basis as common syndromes), physiopathological and psychopathological mechanisms, and genetic factors. Furthermore, we will show that the same genetic variants harbored in different genes are associated with different syndromes and that non-linear interactions between genetic variants (epistasis) best explain phenotype severity, long-term outcome, and response to treatment. These data have been depicted in our studies by extended pedigrees, where ADHD, externalizing symptoms, and SUD segregate and co-segregate. Finally, we applied here a new formal network analysis using the set of significantly replicated genes that have been shown to be either associated and/or linked to ADHD, disruptive behaviors, and SUD in order to detect significantly enriched gene categories for protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity. We found that networks related to pathways involved in axon guidance, regulation of synaptic transmission, and regulation of transmission of nerve impulse are overrepresented. In summary, we provide compiled evidence of complex networks of genotypes underlying a wide phenotype that involves SUD and externalizing disorders

    Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    Get PDF
    Background: Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR).Methods/Principal Findings: The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm.Conclusions/Significance: Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.This work received financial support from the Ministry of Science and Technology of Argentina [PICT 2011-0207 to AGS] and the National Scientific and Technical Research Council in Argentina (CONICET) [PIP 112 2011-010-0974 to AGS]. Work related to evaluation of biological samples was partially sponsored by the Pan-American Health Organization (PAHO) [Small Grants Program PAHO-TDR]; the Drugs and Neglected Diseases Initiative (DNDi, Geneva, Switzerland), Wellcome Trust (London, United Kingdom), SANOFI-AVENTIS (Buenos Aires, Argentina) and the National Council for Science and Technology in Mexico (CONACYT) [FONSEC 161405 to JMR]

    Genetic Variation in the Complete MgPa Operon and Its Repetitive Chromosomal Elements in Clinical Strains of Mycoplasma genitalium

    Get PDF
    Mycoplasma genitalium has been increasingly recognized as an important microbe not only because of its significant association with human genital tract diseases but also because of its utility as a model for studying the minimum set of genes necessary to sustain life. Despite its small genome, 4.7% of the total genome sequence is devoted to making the MgPa adhesin operon and its nine chromosomal repetitive elements (termed MgPars). The MgPa operon, along with 9 MgPars, is believed to play an important role in pathogenesis of M. genitalium infection and has also served as the main target for development of diagnostic tools. However, genetic variation in the complete MgPa operon and MgPars among clinical strains of M. genitalium has not been addressed. In this study we examined the genetic variation in the complete MgPa operon (approximately 8.5 kb) and full or partial MgPar sequences (0.4–2.6 kb) in 15 geographically diverse strains of M. genitalium. Extensive variation was present in four repeat regions of the MgPa operon (with homology to MgPars) among and within strains while the non-repeat regions (without homology to MgPars) showed low-level variation among strains and no variation within strains. MgPars showed significant variation among strains but were highly homogeneous within strains, supporting gene conversion as the likely recombination mechanism. When applying our sequence data to evaluate published MgPa operon-based diagnostic PCR assays and genotyping systems, we found that 11 of 19 primers contain up to 19 variable nucleotides and that the target for one of two typing systems is located in a hypervariable repeat region, suggesting the likelihood of false results with some of these assays. This study not only provides new insights into the role of the MgPa operon in the pathogenesis of M. genitalium infection but has important implications for the development of diagnostic tools

    Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks

    Get PDF
    Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons
    corecore