255 research outputs found

    Development of welding techniques and filler metals for high strength aluminum alloys Final report

    Get PDF
    Welding techniques and filler metals for high strength aluminum alloy

    A retrospective in-depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease:Recommended outcome parameters for glucose management

    Get PDF
    Continuous glucose monitoring (CGM) systems have great potential for real-time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in-depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in-depth analysis of CGM parameters, acquired in a continuous, real-time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in-hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in-depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients

    Designing all-graphene nanojunctions by covalent functionalization

    Full text link
    We investigated theoretically the effect of covalent edge functionalization, with organic functional groups, on the electronic properties of graphene nanostructures and nano-junctions. Our analysis shows that functionalization can be designed to tune electron affinities and ionization potentials of graphene flakes, and to control the energy alignment of frontier orbitals in nanometer-wide graphene junctions. The stability of the proposed mechanism is discussed with respect to the functional groups, their number as well as the width of graphene nanostructures. The results of our work indicate that different level alignments can be obtained and engineered in order to realize stable all-graphene nanodevices

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST

    Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy

    Full text link
    The electrical detection of the surface states of topological insulators is strongly impeded by the interference of bulk conduction, which commonly arises due to pronounced doping associated with the formation of lattice defects. As exemplified by the topological insulator Bi2Te2Se, we show that via van der Waals epitaxial growth on thin hBN substrates the structural quality of such nanoplatelets can be substantially improved. The surface state carrier mobility of nanoplatelets on hBN is increased by a factor of about 3 compared to platelets on conventional Si/SiOx substrates, which enables the observation of well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the possibility to effectively tune the Fermi level position in the films with the aid of a back gate

    Resting energy expenditure in children at risk of hypothalamic dysfunction

    Get PDF
    Objective: Children with suprasellar brain damage are at risk of hypothalamic dysfunction (HD). HD may lead to decreased resting energy expenditure (REE). Decreased REE, however, is not present in all children with HD. Our aim was to assess which children suspect for HD have low REE, and its association with clinical severity of HD or radiological hypothalamic damage. Patients and methods: A retrospective cohort study was performed. Measured REE (mREE) of children at risk of HD was compared to predicted REE (pREE). Low REE was defined as mREE <90% of predicted. The mREE/pREE quotient was associated to a clinical score for HD symptoms and to radiological hypothalamic damage. Results: In total, 67 children at risk of HD (96% brain tumor diagnosis) with a mean BMI SDS of +2.3 ± 1.0 were included. Of these, 45 (67.2%) had low mREE. Children with severe HD had a significant lower mean mREE/pREE quotient compared to children with no, mild, or moderate HD. Mean mREE/pREE quotient of children with posterior hypothalamic damage was significantly lower compared to children with no or anterior damage. Tumor progression or tumor recurrence, severe clinical HD, and panhypopituitarism with diabetes insipidus (DI) were significant risk factors for reduced REE. Conclusion: REE may be lowered in children with hypothalamic damage and is associated to the degree of clinical HD. REE is, however, not lowered in all children suspect for HD. For children with mild or moderate clinical HD symptoms, REE measurements may be useful to distinguish between those who may benefit from obesity treatment that increases REE from those who would be better helped using other obesity interventions

    Modeling the properties of carbon nanotubes for sensor-based devices

    Get PDF
    We acknowledge funding from the European Community through NoE Nanoquanta (NMP4-CT-2004-500198), SANES (NMP4-T-2006-017310), DNA-NANODEVICES (IST-2006-029192) and NANO-ERA Chemistry projects, UPV/EHU (SGIker Arina) and the Basque Governement.Peer reviewe
    corecore