419 research outputs found

    Recombination Ghosts in Littrow Configuration: Implications for Spectrographs Using Volume Phase Holographic Gratings

    Full text link
    We report the discovery of optical ghosts generated when using Volume Phase Holographic (VPH) gratings in spectrographs employing the Littrow configuration. The ghost is caused by light reflected off the detector surface, recollimated by the camera, recombined by, and reflected from, the grating and reimaged by the camera onto the detector. This recombination can occur in two different ways. We observe this ghost in two spectrographs being developed by the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m telescope. The typical ratio of the brightness of the ghost relative to the integrated flux of the spectrum is of order 10^-4, implying a recombination efficiency of the VPH gratings of order 10^-3 or higher, consistent with the output of rigorous coupled wave analysis. Any spectrograph employing VPH gratings, including grisms, in Littrow configuration will suffer from this ghost, though the general effect is not intrinsic to VPH gratings themselves and has been observed in systems with conventional gratings in non-Littrow configurations. We explain the geometric configurations that can result in the ghost as well as a more general prescription for predicting its position and brightness on the detector. We make recommendations for mitigating the ghost effects for spectrographs and gratings currently built. We further suggest design modifications for future VPH gratings to eliminate the problem entirely, including tilted fringes and/or prismatic substrates. We discuss the resultant implications on the spectrograph performance metrics.Comment: 13 pages, 8 figures, emulateapj style, accepted for publication in PAS

    Rocket Observations of Far-Ultraviolet Dust Scattering in NGC 2023

    Get PDF
    The reflection nebula NGC 2023 was observed by a rocket-borne long-slit imaging spectrograph in the 900 -- 1400 Angstrom bandpass on 2000 February 11. A spectrum of the star, as well as that of the nebular scattered light, was recorded. Through the use of a Monte Carlo modeling process, the scattering properties of the dust were derived. The albedo is low, 0.2 -- 0.4, and decreasing toward shorter wavelengths, while the phase function asymmetry parameter is consistent with highly forward-scattering grains, g~0.85. The decrease in albedo, while the optical depth increases to shorter wavelengths, implies that the far-UV rise in the extinction curve is due to an increase in absorption efficiency.Comment: 16 pages, 11 figures, accepted for publication in the Astrophysical Journa

    The CO-H2 conversion factor of diffuse ISM: Bright 12CO emission also traces diffuse gas

    Full text link
    We show that the XCO factor, which converts the CO luminosity into the column density of molecular hydrogen has similar values for dense, fully molecular gas and for diffuse, partially molecular gas. We discuss the reasons of this coincidence and the consequences for the understanding of the interstellar medium.Comment: 5 pages, 1 PostScript figure. To be published in the proceedings of the Zermatt 2010 conference: "Conditions and impact of star formation: New results with Herschel and beyond". Uses EAS LaTeX macro

    Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium

    Get PDF
    We have used archival far-ultraviolet spectra from observations made by HST/STIS and FUSE to determine the column densities and rotational excitation temperatures for CO and H2, respectively, along the lines of sight to 23 Galactic O and B stars. The sightlines have reddening values in the range E(B-V)= 0.07-0.62, sampling the diffuse to translucent interstellar medium. We find that the H2 column densities range from 5x10^18-8x10^20 cm^-2 and the CO from upper limits around 2x10^12 cm^-2 to detections as high as 1.4x10^16 cm^-2. CO increases with increasing H2, roughly following a power law of factor \~2. The CO/H2 column density ratio is thus not constant, and ranges from 10^-7 - 10^-5, with a mean value of 3x10^-6. The sample segregates into "diffuse" and "translucent" regimes, the former having a molecular fraction less than ~0.25 and A_V/d<1 mag kpc^-1. The mean CO/H2 for these two regimes are 3.6x10^-7 and 9.3x10^-6, respectively, significantly lower than the canonical dark cloud value of 10^-4. In six of the sightlines, 13CO is observed, and the isotopic ratio we observe (~50-70) is consistent with, if perhaps a little below, the average 12C/13C for the ISM at large. The average H2 rotational excitation temperature is 74+/-24 K, in good agreement with previous studies, and the average CO temperature is 4.1 K, with some sightlines as high as 6.4 K. The higher excitation CO is observed with higher column densities, consistent with the effects of photon trapping in clouds with densities in the 20-100 cm^-3 range. We discuss the implications for the structure of the diffuse/translucent regimes of the interstellar medium and the estimation of molecular mass in galaxies.Comment: emualateapj style, 6 figures, 3 tables, accepted on 21 Nov 2006 for publication in The Astrophysical Journa

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Traumatic brain injury leads to alterations in contusional cortical miRNAs involved in dementia

    Get PDF
    There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia

    Observations and modeling of H_2 fluorescence with partial frequency redistribution in giant planet atmospheres

    Full text link
    Partial frequency redistribution (PRD), describing the formation of the line profile, has negligible observational effects for optical depths smaller than ~10^3, at the resolving power of most current instruments. However, when the spectral resolution is sufficiently high, PRD modeling becomes essential in interpreting the line shapes and determining the total line fluxes. We demonstrate the effects of PRD on the H_2 line profiles observed at high spectral resolution by the Far-Ultraviolet Spectroscopic Explorer (FUSE) in the atmospheres of Jupiter and Saturn. In these spectra, the asymmetric shapes of the lines in the Lyman (v"- 6) progression pumped by the solar Ly-beta are explained by coherent scattering of the photons in the line wings. We introduce a simple computational approximation to mitigate the numerical difficulties of radiative transfer with PRD, and show that it reproduces the exact radiative transfer solution to better than 10%. The lines predicted by our radiative transfer model with PRD, including the H_2 density and temperature distribution as a function of height in the atmosphere, are in agreement with the line profiles observed by FUSE. We discuss the observational consequences of PRD, and show that this computational method also allows us to include PRD in modeling the continuum pumped H_2 fluorescence, treating about 4000 lines simultaneously.Comment: 17 pages, accepted for publication in Ap

    Rocket and FUSE Observations of IC 405: Differential Extinction and Fluorescent Molecular Hydrogen

    Full text link
    We present far-ultraviolet spectroscopy of the emission/reflection nebula IC 405 obtained by a rocket-borne long-slit spectrograph and the Far Ultraviolet Spectroscopic Explorer. Both data sets show a rise in the ratio of the nebular surface brightness to stellar flux (S/F_*) of approximately two orders of magnitude towards the blue end of the far-UV bandpass. Scattering models using simple dust geometries fail to reproduce the observed S/F_* for realistic grain properties. The high spectral resolution of the FUSE data reveals a rich fluorescent molecular hydrogen spectrum ~1000" north of the star that is clearly distinguished from the steady blue continuum. The S/F_* remains roughly constant at all nebular pointings, showing that fluorescent molecular hydrogen is not the dominant cause for the blue rise. We discuss three possible mechanisms for the ``Blue Dust'': differential extinction of the dominant star (HD 34078), unusual dust grain properties, and emission from nebular dust. We conclude that uncertainties in the nebular geometry and the degree of dust clumping are most likely responsible for the blue rise. As an interesting consequence of this result, we consider how IC 405 would appear in a spatially unresolved observation. If IC 405 was observed with a spatial resolution of less than 0.4 pc, for example, an observer would infer a far-UV flux that was 2.5 times the true value, giving the appearance of a stellar continuum that was less extinguished than radiation from the surrounding nebula, an effect that is reminiscent of the observed ultraviolet properties of starburst galaxies.Comment: 8 pages, 9 figures, using emulateapj, ApJ - accepte

    Spitzer Mapping of PAHs and H2 in Photodissociation Regions

    Full text link
    The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs) and the lowest pure rotational states of molecular hydrogen (H2); two species which are probes of the physical properties of gas and dust in intense UV radiation fields. We utilize the high angular resolution of the Infrared Spectrograph on the Spitzer Space Telescope to construct spectral maps of the PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023, NGC 2023 and IC 63. We present spatially resolved maps of the physical properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We also present evidence for PAH dehydrogenation, which may support theories of H2 formation on PAH surfaces, and a detection of preferential self-shielding of ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2 column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios of ~ 1.8. We find that while the average of each of these properties is consistent with previous single value measurements of these PDRs, when available, the addition of spatial resolution yields a diversity of values with gas temperatures as high as 1500 K, column densities spanning ~ 2 orders of magnitude, and extreme ortho-to-para ratios of 3.Comment: 14 figure
    corecore